General Aviation
Manufacturers Association

2016 General Aviation Statistical Databook \& 2017 Industry Outlook

General Aviation:

- Includes over 416,000 general aviation aircraft flying worldwide today, ranging from two-seat training aircraft and utility helicopters to intercontinental business jets, of which over 210,000 aircraft are based in the United States and over 140,000 aircraft are based in Europe.
- Supports $\$ 219$ billion in total economic output and 1.1 million total jobs in the United States.
- In the U.S., flies over 24 million flight hours, of which two-thirds are for business purposes.
- Flies to more than 5,000 U.S. public airports, while scheduled airlines serve less than 400 airports. The European general aviation fleet can access over 4,200 airports.
- Is the primary training ground for most commercial airline pilots.

General aviation is defined as all aviation other than military and scheduled commercial airl ines.

GAMA is an international trade association representing more than 90 of the world's leading manufacturers of general aviation airplanes and rotorcraft, engines, avionics, components, and related services. GAMA's members also operate repair stations, fixed-based operations, pilot and maintenance training facilities, and manage fleets of aircraft. For more information, visit GAMA's Web site at www.GAMA.aero and look for us on Facebook, Linkedln, and Twitter.

GAMA Mission and Vision

MISSION

The General Aviation
Manufacturers Association (GAMA) exists to foster and advance the general welfare, safety, interests, and activities of the global business and general aviation industry. This includes promoting a better understanding of general aviation manufacturing, maintenance, repair, and overhaul and the important role these industry segments play in economic growth and opportunity, and in serving the critical transportation needs of communities, companies, and individuals worldwide.

VISION

Our vision is to be recognized as the most effective trade association in business and general aviation, aerospace manufacturing, and in the maintenance, repair, and overhaul domain through:

- Enhancing Safety through innovation and the promotion of quality training
- Facilitating improvements in certification, audit, and regulatory processes
- Fostering sustainable general and business aviation growth
- Promoting the economic impact and societal benefits of general and business aviation
- Achieving organizational excellence

Welcome from GAMA's Chairman

One of the questions I'm frequently asked by reporters is, what is the state of the general aviation industry? And one of the main sources I turn to is the book you're reading right now. That's why I'm delighted to introduce you to GAMA's 2016 General Aviation Statistical Databook \& 2017 Industry Outlook.

You'll find inside the latest general aviation shipments and billings, fleet data for the United States and Europe and several other regions, as well as pilot, airport, safety, and accident statistics. This handy compendium delivers a comprehensive look at our global industry, which continues to develop and deliver innovative products and contribute to economies around the world.

As you read the following pages, you'll see that 2016 was another impressive year for GAMA. The association welcomed its first associate members for electric and hybrid propulsion aircraft, embracing an emerging segment of the general aviation market and the evolution toward more autonomous aircraft operations. It saw the U.S. Federal Aviation Administration put into place a rule to make it easier to certify products and technologies for small airplanes, with the European Aviation Safety Agency expected to adopt a similar rule in early 2017. And GAMA continued its successful general aviation jobs rallies, hosting U.S. Senator Gary

Peters (D-MI) and hundreds of general aviation enthusiasts at Duncan Aviation's facility in Battle Creek, Michigan.

In 2017, GAMA will continue to be the premier advocate for general aviation manufacturers, their suppliers, and those who maintain, repair, and overhaul GA aircraft around the world. While working closely with global policymakers and regulators, GAMA will continue as the international resource for industry data with a redesigned website featuring important statistics about the industry, government resources, and career information for the next generation of general aviation leaders. In fact, some of the data previously published in this book has moved to GAMA's website, so please be sure to visit www.gama.aero for more information.

As one of GAMA's founding members, Piper Aircraft has been pleased to be a part of this excellent association for nearly half a century as it has grown to become the esteemed organization you see today. I'm delighted to be the fourth Piper leader to serve as GAMA's Chairman in the association's 47-year history and look forward to even more progress and accomplishments in the year to come.

Best regards,

Simon Caldecott
President and CEO, Piper Aircraft, Inc.

New Rules to Transform General Aviation Market for Light Airplanes

The U.S. Federal Aviation Administration's (FAA) new Part 23 rule promises to be a breakthrough for the light end of the general aviation marketplace ... and likely much more.
"This rule will usher in a new era of safety and a new era of innovation in general aviation here in the United States," FAA Administrator Michael Huerta said in announcing the rule at a press conference in December held at the U.S. Department of Transportation headquarters in Washington, DC.

U.S. FAA Administrator Michael Huerta, second from left, was joined by Hartzell Propeller's Joe Brown, left, Piper Aircraft's Simon Caldecott, second from right, and GE Aviation's Brad Mottier, right, in announcing the finalization of the Part 23 rule. Caldecott is GAMA's Chairman; both Brown and Mottier are former GAMA Chairmen.

Noting that the new rule represents a "fundamental shift in how the FAA approaches certification," Huerta added that it "will allow American businesses to create good manufacturing jobs and to better compete in the global market."

The Part 23 rewrite-which was years in the making-will allow manufacturers of and suppliers for small airplanes to develop and deliver innovative products to their customers more quickly and to better leverage new technologies. Instead of having to comply with unnecessarily prescriptive design requirements, manufacturers will now

U.S. Senator Amy Klobuchar (D-MN), the lead Senate sponsor of the Small Airplane Revitalization Act, has noted that it will allow general aviation manufacturers to "create the most innovative, advanced, and safest planes in the world."
have the ability to respond more nimbly and cost-effectively through performancebased airworthiness safety rules and consensus standards for compliance.
"This rule is nothing less than a total rethinking of how our industry can bring new models of pistons, diesels, turboprops, light jets, and new electric and hybrid propulsion airplanes to market, as well as facilitating safetyenhancing modifications and upgrades to the existing fleet," GAMA President and CEO Pete Bunce said.
"The new Part 23 rule makes it easier for manufacturers to do so by reducing the time, cost, and risk involved in certification, while improving safety for customers," Bunce added.
"As the leader of an aircraft manufacturing company, I can tell you firsthand that this rule will allow Piper Aircraft to bring new safety-enhancing technologies and aircraft to our customers without being held back by outdated and inflexible regulations," GAMA Chairman Simon Caldecott, President and CEO of Piper Aircraft, noted.
"This new Part 23 rule will help us to keep pace with new developments and allow us to more readily leverage innovation," added Brad Mottier, Vice President and General Manager of Business and General Aviation \& Integrated Systems for GE Aviation. As a past Chairman of GAMA's Technical Policy Committee, Mottier worked with the FAA on the Part 23 rewrite effort.

Joe Brown, President of Hartzell Propeller Inc., provided perspective as both a pilot and as a supplier. The new rule will increase his ability to buy a "more
attractive airplane in the years ahead," he said. The accelerated rates of innovation and production it enables "are good for me as a supplier, and what that means to me is jobs."

The Part 23 effort is part of a global initiative to streamline the way light aircraft are certified and ensure harmonization. The European Aviation Safety Agency is also in the process of rewriting its CS-23 rule for small airplanes, and is slated to announce the finalization of its rule in 2017. Other regulatory authorities worldwide are expected to follow suit.

The new U.S. rule is based on the work of the Part 23 Reorganization Aviation Rulemaking Committee (ARC), which GAMA co-chaired. The ARC developed recommendations for the rewrite, which were included in the Small Airplane Revitalization Act (SARA) that the U.S. Congress passed unanimously and President Obama signed into law in 2013. U.S. Senator Amy Klobuchar (D-MN) and U.S. Representative Mike Pompeo ($\mathrm{R}-\mathrm{KS}$) were the lead SARA co-sponsors in Congress. After the FAA released a Notice of Proposed Rulemaking in March, nine general aviation groups in May jointly called the FAA's process "a poster child for good rulemaking."

Bunce spoke about the importance of the Part 23 effort at an event with Senator Klobuchar and U.S. Representative Rick Nolan (D-MN) in December to celebrate the first delivery of the Cirrus Vision Jet in Duluth, Minnesota.

In addition, Administrator Huerta, Bunce, Caldecott, and GAMA Vice Chairman Phil Straub, Executive Vice President and Managing Director-Aviation of Garmin International, Inc., thanked SARA's sponsors at a reception in January 2017. Members of Congress attending the event included Senators Klobuchar and Jerry Moran (R-KS), and Representatives Dan Lipinski (D-IL), Sam Graves (R-MO), Todd Rokita (R-IN), John Duncan (R-TN), Mark Meadows (R-NC), Buddy Carter (R-GA), and Nolan, as well as staff from other Congressional offices.

General Aviation Lifts the Michigan Economy

More than 300 general aviation employees, students, veterans, and other enthusiasts packed into a hangar at Duncan Aviation as they celebrated the industry's contributions to the Michigan economy on June 17 in Battle Creek.
U.S. Senator Gary Peters thanked employees and speakers from GAMA companies-including Avfuel Corporation, Duncan Aviation, L-3 Technologies, and Williams International-for working in an industry he called "absolutely vital" to Michigan and to the United States.
"This is not just a job for you; this is a passion," Peters told the crowd. "This is something that's in your blood. This is something that you love and this is something that you're able to do that contributes so much to our country."

2016 GAMA Chairman Aaron Hilkemann, President and CEO of Duncan Aviation, noted that his company's economic impact goes further than its employees. "Our aviation business also supports a lot of good jobs in our communities," he said. "Because most of our customers come from a great distance, they often stay in local hotels, rent cars, eat in our local restaurants, and spend money in our stores."

GAMA President and CEO Pete

 Bunce said Michigan's general aviation sector is "wonderfully diverse," including maintenance, repair, and overhaul facilities, avionics and engine manufacturers, and their suppliers. "Our rally was a fantastic way to join with
Abstract

U.S. Senator Gary Peters (D-MI) addresses the audience at GAMA's Michigan GA Jobs Rally.

hundreds of general aviation employees, students, and other aviation enthusiasts to celebrate how general aviation is lifting Michigan," he concluded.

Separately, GAMA held a roundtable with top staffers of U.S. Senator Cory Booker (D-NJ) in September at Jet Aviation in Teterboro, New Jersey. Other GAMA members with a presence in New Jersey also attended, discussing critical topics of interest to the industry. The roundtables are an excellent way to engage U.S. members of Congress and their staffs in a small-scale setting to develop and deepen awareness of the policy opportunities and challenges facing general aviation manufacturers, and maintenance, repair, and overhaul providers.

Second Circuit Upholds Federal Preemption in Aviation Noise Case

In November, the U.S. Court of Appeals for the Second Circuit issued a victory for the aviation industry in Friends of the East Hampton Airport et al. v. Town of East Hampton, setting important precedent on the federal preemption question presented in this airport noise and access case.

The case arose from operators challenging three East Hampton, New York laws limiting access to the airport. GAMA filed an amicus brief supporting the operators' position that East Hampton's laws are preempted by the Airport Noise and Capacity Act of 1990 (ANCA) because, significantly, ANCA applies to all airports regardless of federal funding status. The court recognized that "Congress promulgated ANCA based on findings that 'community noise concerns have led to uncoordinated and inconsistent restrictions on aviation that could impede the national air transportation system' and, therefore, 'noise policy must be carried out at the national level.'" The opinion cited GAMA's brief explaining how East Hampton's laws are inconsistent with FAA and international noise standards.

GAMA's advocacy efforts include its annual Hill Day.
In May, GAMA Board members held 132 meetings with members of Congress and their staffs from 44 states.

U.S. Representative Mario Diaz-Balart (R-FL), in red tie, met with Mark Hood of PPG Aerospace; Chuck Barresi of B/E Aerospace; Rhett Ross of Continental Motors; and David Coleal and Jamie Hunter, both of Bombardier Business Aircraft, on Hill Day.

Wisconsin Students Flourish As They Build an Airplane

Over two weeks in June, the winners of the GAMA/Build A Plane 2016 Aviation Design Challenge transformed from a quiet group of high school students into teenagers confident about their ability to build a Glasair Sportsman airplane and speak before political leaders.

As teacher Mike Hansen said, "The progress each of the students made in the areas of communication, teamwork, and technical skills will serve them well for the rest of their lives."

Hailing from Weyauwega-Fremont High School in Weyauwega, Wisconsin, students Natasha Stemwedel, Derrick Cleaves, Logan Feltz, and Austin Krause-along with Hansen and chaperone Jerry Graf-won GAMA's fourth annual Science, Technology, Engineering, and Mathematics (STEM) Aviation Design Challenge for U.S. high schools. In a classroom setting, they used Fly to Learn curriculum and software powered by X-Plane to learn the basics of aerospace engineering and aviation flight. They then applied what they learned to make modifications to a Cessna 172SP virtual airplane using simulator software, taking part in a virtual fly-off against 75 other schools in 31 states. The competition included their score from the fly-off, a checklist detailing the steps they took to make the successful flight, a summary of the design changes they made, and three videos they created throughout the contest on what they learned.

The winning team received a trip to Glasair Aviation in Arlington, Washington to help build a real Sportsman airplane. From June 20 to July 1, they worked side by side with staff from Glasair, GAMA, and Jeppesen, as well as builder Dennis Willows, his daughter Grace, and his grandsons Angus and lan. Starting at 7 a.m. each day, their tasks included bucking rivets, fabricating metal and composite brackets, running control cables, sanding the airframe, fabricating and attaching fuel lines, mounting the

Europe Moves to Update Basic Regulation for GA Aircraft

European leaders took several major steps in 2016 toward revisiting how general aviation in Europe is regulated and how the European Aviation Safety Agency (EASA)—the European Union's (EU) aviation regulatory body-will perform its role in the future.

Besides moving from prescriptive to more nimble, performance-based regulations and standards, the revised EASA Basic Regulation is expected to include improved certification processes and assign new roles to the agency in oversight, security, research, and other areas. While EASA has historically focused on large commercial airlines to the detriment of general aviation, European leaders are seeking to correct this by reducing undue burdens and adapting regulations to better address the diversity and specificities of general aviation. The future Basic Regulation is expected to enshrine this key concept.
"For general aviation, it is imperative that we have the appropriate level of regulation for each activity, combined with efficient oversight that facilitates the development of new and innovative products," GAMA President and CEO Pete Bunce said.

Bunce noted that any final regulation must also allow EASA to focus on the areas where safety and utility of general aviation in Europe can receive the most benefit. To do this, GAMA supports basic aggregate data-sharing among European countries. GAMA also supports EASA issuing EU-level regulations for operations and maintenance organizations with facilities across EU Member States to allow the issuance of pan-European certificates.

In December, EU Member State Transport Ministers agreed on the new direction for EASA. This followed a November vote in the European Parliament, where members of its Transport \& Tourism Committee overwhelmingly voted to open negotiations with EU Member States and the European Commission on the issue. The three parties are expected to reach agreement on the final regulation by mid-2017.

Bunce added, "There is clear political will to assure a strong future for general aviation and to ensure a risk-based, proportionate approach guides all future EASA work."

GAMA Adds New Associate Members

GAMA welcomed its first associate members in 2016, admitting 10 companies that are researching and developing electric and hybrid propulsion air vehicles. GAMA created this new membership category in 2015 to facilitate coordination of the associate members' technical expertise and GAMA's policy experience to enable the development, growth, and airworthiness certification worldwide of new electric and hybrid propulsion technology to benefit general aviation in the future.

In addition, GAMA launched the Electric Propulsion and Innovation Committee (EPIC), which promotes certified hybrid and electric propulsion aircraft in general aviation design, production, and maintenance among key global aviation regulators. The EPIC, which now includes 40 members, is planning to release the first public standard for measuring the performance of electric and hybrid general aviation aircraft operations in early 2017.

Key Milestone Reached for Single-Engine Commercial Operations in Europe

European Union Member States reached agreement with the European Commission in June to approve a regulatory framework that will allow Commercial Air Transport (CAT) operations to use Single-Engine Turbine airplanes at night or in Instrument Meteorological Conditions (SET-IMC).

The vote came after more than two decades of technical work between industry and regulators, and ensures Europe will meet the International Civil Aviation Organization (ICAO) standards for CAT operations, which were issued in 2005. Single-engine airplane commercial operations are common across the globe with large fleets operating today in Australia, Latin America, and North America. GAMA and several of its member companies played a key role in a rulemaking group created by the European Aviation Safety Agency in 2012 to develop the agency's regulatory framework.

The rule enables passenger, medical service, and cargo operations to enter into new markets that previously were not possible to serve reliably. The regulation is on track to take effect in 2017.

General Aviation Safety Improves in 2016

The general aviation industry's multipronged efforts to improve safety technologies and procedures are paying off, with the fewest number of fatal accidents ever recorded.

The 2015 fatal accident rate was 1.09 per 100,000 flight hours-a new low-and the preliminary data for 2016 shows further improvement. A cross-section of initiatives to advance GA safety in the United States-including education, training, and enabling new equipage in the fleet through efforts like the General Aviation Joint Steering Committeehas helped to lower the numbers.
GAMA is encouraged that Europe is establishing its own safety program for general aviation airplane and rotorcraft operations, which should help improve safety further.

FAA Issues Modernized Standards for Pilot Testing

The U.S. Federal Aviation Administration (FAA) is seeking to help pilots make safer decisions in the cockpit through the first of several modernized standards for testing pilots it put into place in 2016.

In June, the agency published new standards for private and instrument pilot testing. The Airman Certification Standards (ACS) replaced the Practical Test Standards and Learning Statement reference guides, offering a path to clearer and more relevant training. The ACS standards also better integrate the concept of risk management to help pilots improve their decision-making ability in the cockpit. Additionally, the FAA used the ACS to issue operator standards for small Unmanned Aircraft Systems.

The new standards were the result of five years of close work between the FAA and industry. GAMA chaired the Airman Testing Standards and Training Aviation Rulemaking Committee, which developed the ACS framework in 2012.

The FAA is developing new ACS for other certificates-including those for
commercial pilots, airline transport pilots, instructors, and aircraft mechanics-to ensure a consistent approach across the aviation industry. Providing clearer guidance on how to marry up training, knowledge, and risk management in a more meaningful and relevant way will help advance aviation safety without creating new requirements for how the industry teaches airmen to fly and maintain aircraft.

Incentive Prompts Operators to Equip with ADS-B

Giving pilots more information about what's going on in the airspace around them is a key safety feature of Automatic Dependent Surveillance-Broadcast (ADS-B) equipment, which operators installed on their airplanes at increasing rates in 2016.

In the United States, operators face a January 1, 2020 mandate to equip with ADS-B, a linchpin of the FAA's NextGen air traffic modernization program that will allow aircraft to communicate their position using satellite-based technology. The FAA announced the 2020 deadline in 2010, requiring that all aircraft flying in certain controlled airspace equip. Approximately 28,810 U.S.-registered aircraft were equipped with rulecompliant ADS-B by the end of 2016.

As of early 2017, 4,074 operators had opted to take advantage of the rebate and install ADS-B equipment on their airplanes.

Operators in Australia, Europe, and several other regions face similar upcoming ADS-B equipage mandates.

ADS-B offers numerous advantages to pilots, including greater situational awareness, traffic information, and, in the United States, free in-cockpit weather. "By equipping their aircraft with ADS-B, operators will have access to enhanced surveillance-a critical safety feature,"

GAMA President and CEO Pete Bunce noted.

In September, the FAA began offering a $\$ 500$ incentive to the first 20,000 single-engine piston airplane operators who equip over a one-year period. The objective of the incentive program is to have operators equip earlier to avoid the risk of constrained maintenance and manufacturer capacity in 2018 and 2019, immediately before the mandate enters into effect. As of early 2017, 4,074 operators had opted to take advantage of the rebate and install ADS-B equipment on their airplanes.

Aviation Security Standards Presented by Rulemaking Group

Taking steps to protect aircraft and systems from cybersecurity threats remained an important priority for regulators in the United States and Europe.

In November, the FAA published 30 recommendations made by the Aircraft Systems Information Security Protection (ASISP) working group to enhance cybersecurity for aircraft and systems. Recommendations covered eight different areas, including updating regulations, guidance, and associated standards for transport/ large and small aircraft and their systems; updating the FAA's policy for how special conditions are issued for cybersecurity; and establishing guidance for certain functions, including field loadable software, portable electronic devices, and equipment used for communications, navigation, and surveillance. GAMA co-chaired the ASISP working group, which met over a 14-month period. More than a dozen member companies were involved with the technical work underlying the recommendations.

The FAA and the European Aviation Safety Agency are both working to implement a regulatory framework for aircraft cybersecurity based on the ASISP recommendations.

Efforts Seek to Make Certification Process More Efficient and Effective for New Products and Technologies

Regulators across the globe are seeking ways to facilitate general aviation manufacturers bringing new products and technologies to market. Two of the more notable efforts in 2016 included the publication of a new strategy by the four leading aviation regulators to recognize each other's certification approvals, and the implementation of a scorecard in the U.S. to determine how well the Organizational Designation Authorization (ODA) program is working.

Enhancing Global Acceptance of Certified Products

Aviation regulators in the four leading states of design-Brazil, Canada, Europe, and the United States-are partnering to better leverage scarce resources and improve the certification process for new general aviation products and technologies.

In September, the Certification Management Team (CMT)—which includes the Agência Nacional de Aviação Civil of Brazil (ANAC), European Aviation Safety Agency (EASA), Transport Canada Civil Aviation (TCCA), and the U.S. Federal Aviation Administration (FAA)—published a strategy to better
manage the certification process among them. By utilizing their respective bilateral agreements, the four authorities will create a risk-based framework that encourages each authority to accept one another's certification of new products and technologies.

GAMA President and CEO Pete Bunce called the CMT agreement an "extremely important step forward to strengthen global leadership and streamline certification processes among authorities."

Additionally, the FAA and EASA published a joint Validation Improvement Roadmap to implement their part of the overall CMT agreement. This Roadmap includes specific milestones to ensure that the benefits and efficiencies negotiated as part of the European Union/United States Bilateral Aviation Safety Agreement are realized by manufacturers that export aviation products and technologies between Europe and the United States. Bunce said the FAA and EASA agreement "will better facilitate more safety-enhancing products and technologies reaching our global customer base."

Federal Aviation Administration

Transports
Canada

Scorecard Aims to Improve ODA Program for Manufacturers

Separately, the FAA launched a nationwide program to support more efficient type certification programs by measuring the effectiveness of ODA programs for manufacturers.

After a successful test of a prototype in 2015, the FAA rolled out the ODA scorecard across the U.S. to monitor performance metrics for both manufacturer compliance activities and FAA utilization and delegation oversight. ODAs offer a way for companies to conduct FAA-approved technical compliance activities without the agency's direct involvement, allowing the FAA to spend its resources more wisely. However, in the past, some general aviation manufacturers have not been able to fully take advantage of their investment in ODA because of case-bycase decisions made by local FAA offices, resulting in significant costs and delays to their certification programs.

To help remedy this issue, the ODA scorecard seeks to facilitate discussions between local offices and manufacturers to improve the overall effectiveness and efficiency of certification programs. It measures how fully a company is able to use its ODA program and how well the company complies with the ODA. Based on the scorecard results, the company and the FAA will mutually develop an improvement plan with specific tasks and milestones to address specific performance issues.

The scorecard aims to ensure that issues specific to a particular program or person are dealt with at the local level, while also providing visibility to the Directorate Regional Office and FAA headquarters in the event that improvement plans and milestones are not met. In addition, it seeks to continuously improve communications so that future needs and goals are reached.

Historic Environmental Progress for Aviation

Global aviation reached two milestone agreements at the International Civil Aviation Organization (ICAO) in 2016: one to adopt carbon-neutral growth of emissions and a second to apply a carbon emission standard to most new aircraft.

The efforts mark concrete steps toward achieving three climate change aspirational goals the business aviation industry announced in 2009. These goals are: improving fuel efficiency 2 percent per year from 2010 to 2020; achieving carbon-neutral growth from 2020; and reducing CO_{2} emissions 50 percent by 2050 relative to 2005.

GAMA Heralds Agreement to Offset Aviation Carbon Emissions

 In October, ICAO adopted the Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA) at its 39th General Assembly in Montreal, Canada, providing countries with a three-phase framework to adopt carbonneutral growth from 2021 onward. While the pilot and first implementation phases starting in 2021 and 2024, respectively, are voluntary, 66 states-representing over 86 percent of all international aviation activity-have committed to participate. Subsequently, all participating states must offset all carbon emissions from international aviation when the second phase begins in 2027.The historic agreement, which marks the first scheme put into place for any industrial sector, "stands as a testament to the global aviation industry's commitment to do its part to mitigate its effect on the earth's climate," GAMA President and CEO Pete Bunce said. GAMA members "worked hard to achieve an agreement that will balance the industry's continued economic growth with the need to address international aviation CO_{2} emissions."

While CORSIA will be administered and enforced by each state, least-developed

In September, GAMA published a brochure highlighting the industry's efforts to reduce its impact on the environment.
states, small island states, and states whose international aviation activity falls below a minimum threshold are exempt from mandatory participation. In addition, operators that emit under 10,000 metric tons of CO_{2} per year and small aircraft below $5,700 \mathrm{~kg}$ are also exempt, balancing the needs of small businesses and general aviation.

Milestone Reached on First CO_{2} Standard for New Aircraft

Earlier in the year, ICAO finalized development of the first CO_{2} emission standard for aircraft.

The result of six years of arduous technical work and negotiations among industry, governments, and other stakeholders, the CO_{2} emissions standard applies to new business jet type designs as of 2023, and to all covered aircraft in production by 2028. The CO_{2} reductions can be achieved through a range of potential technology developments, including structural, aerodynamic, or propulsion innovations.

The standards, which were announced in February and endorsed at ICAO's 39th General Assembly in October, are expected to be adopted by the ICAO Council in early 2017. This new standard marks the first time carbon emissions from aircraft have been regulated internationally, and will be implemented by national governments. Small business jet aircraft with a maximum take-off weight below $5,700 \mathrm{~kg}$ and propellerdriven aircraft below $8,618 \mathrm{~kg}$ are exempt.
"This landmark environmental measure reinforces the industry's strong record of bringing to market technology that improves aviation's efficiency, and is
an important part of our industry's commitment to address climate change," Bunce noted.

FAA Selects Two Unleaded Avgas Candidate Fuels for Further Testing

In March, the U.S. Federal Aviation Administration (FAA) selected two unleaded aviation fuels, developed by Shell and Swift Fuels, for further testing as part of its effort to qualify and deploy an unleaded aviation gasoline to replace the 100 low-lead avgas currently used in the piston aircraft fleet. This is a key milestone of the Piston Aviation Fuels Initiative (PAFI), a government-industry program leading the unleaded avgas development. GAMA is a member of the PAFI Steering Group.

The full-scale engine and aircraft testing of the two fuels began during the summer at the FAA's William J. Hughes Technical Center in Atlantic City, New Jersey, and is being supported by engine and aircraft manufacturers and commercial operators. Testing is expected to wrap up in 2018, and the results will be used to address certification requirements and FAA issuance of a fleet-wide authorization for general aviation aircraft that can use the fuels, as well as support the development of an ASTM International Production Specification for commercialization.

The unleaded avgas testing process began in 2013. The FAA has winnowed 17 candidate unleaded fuels to two fuels through evaluations and a first phase of rigorous laboratory and rig testing.

GAMA President and CEO Pete Bunce said that identifying a viable unleaded avgas option for operators is "critical to the future of general aviation." He added, "A successful transition from leaded to unleaded avgas will mean the continued safety and utility of the fleet, a reduced environmental impact, and lower economic transition costs for our industry."

Table of Contents

1 General Aviation Shipments and Billings 11
2 Canada and U.S. General Aviation Fleet, Flight Activity, and Forecast. 20
3 European Fleet Data 31
4 Asia-Pacific Fleet Data 38
5 Select Other GA Aircraft Registry Data for Large Fleets 40
6 U.S. Pilot and Airmen Certificate Statistics 41
7 Airports and Aeronautical Facilities 46
8 Safety and Accident Statistics 50
2017 Executive Committee 54
GAMA Staff 55
GAMA Member Companies 56

The 2016 General Aviation Statistical Databook \& 2017 Industry Outlook contains aircraft shipment and billing information for 39 manufacturers of general aviation aircraft worldwide. The U.S. fleet data in this Databook provides an overview of how the 210,000 active general aviation aircraft currently registered in the United States are used: from personal and recreational flying to various types of business operations, flight instruction, and aeromedical.

Additional North American data is provided for more than 32,000 aircraft in Canada. The European data section contains aircraft registry data from 33 countries-over 142,000 individual registered aircraft. The Databook also includes information about other key general aviation markets: Australia, Brazil, China, New Zealand, and South Africa. In addition, it provides historical data about general aviation safety in both Europe and the U.S.

Aircraft Shipments and Billings

More than $\$ 24$ billion in new general aviation aircraft were delivered in 2016. The year-end results were mixed across the market segments and among the manufacturers, and showed a decline from the $\$ 29$ billion in general aviation aircraft deliveries in 2015. GA aircraft sales were strongest in North America, particularly in the United States, and in Europe. The market remained soft in several important markets in the Latin America and Asia-Pacific regions.

The number of business jet deliveries declined from 718 units in 2015 to 661 units in 2016. Business jet deliveries were strongest in the North American market at 62.0 percent, an increase in market share compared to 2015. North America comprised the largest market share for business jets in 2016 since GAMA started publishing data in 2007. Deliveries to Europe also increased in share from 18.0 to 18.8 percent, while the Asia-Pacific, Latin America, and the Middle East and African market shares contracted compared to the prior year.

Turboprop shipments maintained pace in 2016 at 582 units, a slight increase from 557 units from the same companies the prior year. The share of turboprop shipments in 2016 in North America increased slightly compared to the prior year, 57.8 percent compared to 56.2 percent. The second largest market share for turboprop airplane shipments in 2016 was the Asia-Pacific region at 13.2 percent. Shipments of turboprop airplanes to Europe regained their footing in 2016 after two unusually slow years, at 10.6 percent. Latin America accounted for 9.9 percent, a decline from 2015, while the combined Middle East and Africa region accounted for 8.4 percent.

The preliminary turbine (*) results for the rotorcraft industry point to a decline in shipments from 753 units in 2015 to 637 units in 2016, a 15.4 percent drop.

In 2016, piston airplane shipments fell to 1,019 units compared to 1,056 units the prior year. The decline in shipments was 4.9 percent for the same reporting companies. The North American market share, however, retained its position and increased to 69.6 percent, which is its largest share of total deliveries in the past decade. The second largest market for piston airplane shipments in 2016 was the Asia-Pacific region at 10.2 percent, closely followed by Europe at 10.1 percent. Latin America accounted for 5.8 percent of shipments, and the Middle East and Africa were 4.3 percent.

Piston rotorcraft shipments decreased in 2016 by 19.7 percent from 2015. There were 224 piston rotorcraft deliveries in 2016.

Turbine Aircraft Operators

The worldwide business aircraft fleet continued to grow in 2016. At the end of the year, JETNET, LLC, showed that the turbine fleet consisted of 36,674 airplanes and 21,225 rotorcraft. There were an additional 9,670 piston rotorcraft in operation, a slight decline from the prior year.

JETNET, LLC also tracks the number of operators. There were 21,968 business airplane operators and 14,171 rotorcraft operators at the end of 2016.

The fractional aircraft fleet grew for the second year in a row according to JETNET, LLC. In 2016, 882 aircraft were used in fractional operations, up from 837 aircraft in 2015 . The number of fractional owners, however, declined from 4,369 owners at the end of 2015 to 4,145 owners at the end of 2016.

U.S. Pilot Population

The U.S. active pilot population continued its downward trajectory in 2016 and reached one of its lowest numbers in decades at 584,362 pilots at the end of 2015, based on preliminary data. There was, however, an uptick in the number of student pilot certificates held at the end of 2016 (128,501 compared to 122,749 the prior year). The number of active private pilots decreased by 4.9 percent to 162,313 pilots. The Databook also includes 20,362 Remote Pilots, a new certificate created by the FAA in 2016. Additional data about pilot population can be found in Chapter 6 of the Databook.

Additional data can be accessed

 online at www.GAMA.aero. If you have questions about GAMA's Databook, please contact GAMA staff at +1-202-393-1500 or via email at info@GAMA. aero.(*) Leonardo Helicopters Q4 data was not available at the time of publication. Leonardo Helicopters will release yearend results in March 2017. GAMA will update the online 2016 report then. For the purpose of comparison in the market overview, GAMA excluded 2015 Q4 data for Leonardo in the above text.
(**) AVIC General was added to the shipment report in 2016. The 2016 piston and turboprop airplane data includes shipments from AVIC General.

General Aviation Shipments and Billings

1.1 General Aviation Airplane Shipments by Type of Airplane Manufactured Worldwide (1994-2016)

Year	Crand Total	Single-Engine Piston	Multi-Engine Piston	Total Piston	Turboprop	Business Jet	Total Turbine
1994	1,132	544	77	621	233	278	511
1995	1,251	605	61	666	285	300	585
1996	1,437	731	70	801	320	316	636
1997	1,840	1,043	80	1,123	279	438	717
1998	2,457	1,508	98	1,606	336	515	851
1999	2,808	1,689	112	1,801	340	667	1,007
2000	3,147	1,877	103	1,980	415	752	1,167
2001	2,998	1,645	147	1,792	422	784	1,206
2002	2,677	1,591	130	1,721	280	676	956
2003	2,686	1,825	71	1,896	272	518	790
2004	2,962	1,999	52	2,051	319	592	911
2005	3,590	2,326	139	2,465	375	750	1,125
2006	4,054	2,513	242	2,755	412	887	1,299
2007	4,277	2,417	258	2,675	465	1,137	1,602
2008	3,974	1,943	176	2,119	538	1,317	1,855
2009	2,283	893	70	963	446	874	1,320
2010	2,024	781	108	889	368	767	1,135
2011	2,120	761	137	898	526	696	1,222
2012	2,164	817	91	908	584	672	1,256
2013	2,353	908	122	1,030	645	678	1,323
2014	2,454	986	143	1,129	603	722	1,325
2015	2,331	946	110	1,056	557	718	1,275
2016	2,262	890	129	1,019	582	661	1,243

FIGURE 1.1 General Aviation Airplane Shipments and Billings Worldwide (1994-2016)

1.2 Estimated Billings (in Millions) for General Aviation Airplane Shipments by Type of Airplane Manufactured Worldwide (1994-2016)

Year	Grand Total	Single-Engine Piston	Multi-Engine Piston	Total Piston	Turboprop	Business Jet	Total Turbine
1994	3,749	n/a	n/a	111	714	2,924	3,638
1995	4,294	n/a	n/a	169	774	3,351	4,125
1996	4,936	n/a	n/a	191	864	3,881	4,745
1997	7,170	n/a	n/a	238	913	6,019	6,932
1998	8,604	n/a	n/a	377	1,011	7,216	8,227
1999	11,560	n/a	n/a	440	930	10,190	11,120
2000	13,496	n/a	n/a	512	1,323	11,661	12,984
2001	13,868	n/a	n/a	541	1,210	12,117	13,327
2002	11,778	n/a	n/a	483	868	10,427	11,295
2003	9,998	n/a	n/a	545	837	8,616	9,453
2004	12,093	n/a	n/a	692	997	10,404	11,401
2005	15,156	n/a	n/a	805	1,189	13,161	14,350
2006	18,815	n/a	n/a	857	1,389	16,555	17,958
2007	21,837	n/a	n/a	897	1,593	19,347	20,940
2008	24,846	n/a	n/a	945	1,953	21,948	23,901
2009	19,474	n/a	n/a	442	1,589	17,443	19,032
2010	19,715	n/a	n/a	415	1,300	18,000	19,300
2011	19,042	n/a	n/a	441	1,365	17,235	18,600
2012	18,895	n/a	n/a	428	1,359	17,108	18,467
2013	23,450	n/a	n/a	571	1,821	21,058	22,879
2014	24,499	n/a	n/a	635	1,849	22,015	23,864
2015	24,129	n/a	n/a	601	1,651	21,877	23,528
2016	20,719	n/a	n / a	661	1,705	18,353	20,058

Starting in 2011, the data includes the addition of agricultural airplanes, new piston airplane manufacturers, and some helicopter manufacturers.
Source: GAMA
The data cannot be directly compared to 2010 and earlier entries. Refer to Tables 1.4 b and 1.4 c for make and model detail.

1.3 Customer Delivery Region (in Percent of Total) for General Aviation Airplane Shipments by Type of Airplane Manufactured Worldwide (2007-2016)

Year	Piston					Turboprop					Business Jet				
	North America	Europe	AsiaPacific	Latin America	Middle East \& Africa	North America	Europe	AsiaPacific	Latin America	Middle East \& Africa	North America	Europe	AsiaPacific	Latin America	Middle East \& Africa
2007	66.5	16.3	9.2	5.4	2.7	57.2	16.3	8.6	14.4	3.4	58.3	24.9	4.2	7.5	5.2
2008	68.1	15.2	7.5	7.3	2.0	57.3	21.9	6.0	7.4	7.4	53.8	25.9	4.7	9.4	6.3
2009	59.4	21.2	9.5	6.8	2.8	57.8	17.5	8.7	8.1	7.8	49.4	26.3	8.6	9.2	6.4
2010	53.4	18.6	13.7	8.8	5.5	43.2	15.2	16.8	14.7	10.1	42.1	22.8	11.8	14.3	9.0
2011	57.7	12.0	15.6	10.0	4.6	52.6	14.1	14.4	13.6	5.3	50.0	20.2	12.9	10.1	6.8
2012	50.4	19.6	16.3	9.7	4.1	48.6	12.6	17.4	14.5	6.9	49.7	20.8	11.8	11.6	6.1
2013	52.8	17.2	15.1	10.0	5.0	57.1	10.5	14.0	13.2	5.3	52.4	15.6	11.9	11.1	9.0
2014	55.1	19.7	12.1	8.9	4.3	51.3	7.7	19.4	15.3	6.3	52.2	19.5	10.9	9.4	7.9
2015	66.7	11.4	13.5	6.3	2.2	56.2	6.6	16.3	14.5	6.3	60.8	18.0	9.2	7.1	4.9
2016	69.6	10.1	10.2	5.8	4.3	57.8	10.6	13.2	9.9	8.4	62.0	18.8	7.7	6.2	5.3

1.4a Worldwide Business Jet Shipments by Manufacturer (2003-2016)

	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Airbus	0	0	9	11	13	11	13	15	10	9	6	5	4	1
Airbus Corporate Jet (all models)	0	0	9	10	12	9	11	-	-	-	-	-	-	-
ACJ318	-	-	-	-	-	-	-	2	2	2	1	0	1	0
ACJ319	-	-	-	-	.	-	-	8	6	6	4	1	1	0
ACJ320	-	-	-	-	-	-	-	3	1	0	0	4	1	0
ACJ321	-	-	-	-	-	-	-	-	-	-	1	0	0	0
ACJ330	-	-	-		1	1	1	1	1	1	0	0	1	1
ACJ340	-	-	-	1	0	1	1	1	0	0	0	0	0	0
Avcraft (prev. Fairchild)	9	9	1	0	0	0	0	0	0	0	0	0	0	0
Envoy 3	9	9	1	-	-	-	-	-	-	-	-	-	-	-
Boeing Business Jets	7	3	4	13	7	6	6	12	8	12	7	10	11	4
Boeing Business Jet	4	2	3	12	7	3	3	4	8	2	5	3	4	1
Boeing Business Jet 2	3	1	1	1	0	1	0	2	0	2	1	2	1	0
Boeing Business Jet 3	-	-	-	-	-	2	1	4	0	0	0	0	1	0
Boeing 737-800	-	-	-	-	-	-	-	-	-	-	-	-	-	2
Boeing Business Jet 747	-	-	-	-	-	-	-	-	-	8	0	0	0	0
Boeing Business Jet 767	-	-	-	-	-	-	1	0	0	0	0	0	0	0
Boeing Business Jet 777	-	-	-	-	-	-	1	2	0	0	0	1	1	1
Boeing Business Jet 787	-	-	-	-	-	-	-	-	-	-	1	4	4	0
Bombardier Business Aircraft	70	130	188	213	224	247	173	150	182	179	180	204	199	163
Learjet 31A	2	-	-	-	-	-	-	-	-	-	-	-	-	-
Learjet 40/XR	-	17	21	26	57	48	33	16	24	24	1			-
Learjet 45/XR	17	22	28	30	57	4	3	16			1			
Learjet 60/XR	12	9	18	15	23	26	13	12	19	15	10	1	0	-
Learjet 70/75	-	-	-	-	-	-	-	-	-	-	18	33	32	24
Challenger 300/350	1	28	50	55	51	60	33	29	37	48	55	54	68	62
Challenger 604/605	24	29	36	29	35	44	36	38	43	34	32	36	25	26
Global 5000	-	4	17	18	46	52	51	49	53	54	62	80	73	51
Global 6000/Express	14	20	13	22	46	52	51	4	53	54	62	80	73	5
CL 850/870/890	-	1	5	18	12	17	7	6	6	4	2	0	1	0
Cirrus Aircraft	0	0	0	0	0	0	0	0	0	0	0	0	0	3
SF50	-	-	-	-	-	-	-	-	-	-	-	-	-	3
Dassault Falcon Jet	49	63	51	61	70	72	77	95	63	66	77	66	55	49
Falcon 50EX	8	5	5	5	2	1	-	-	-	-	-	-	-	-
Falcon 900C	3	3	1	-	-	-	-	-	-	-	-	-	-	-
Falcon 900EX	6	1	-	-	-	-	-	-	-	-	-	-	-	-
Falcon 900DX	-	-	2	4	10	4	1	3	-	-	-	-	-	-
Falcon 900EX EASy	4	14	16	16	18	19	17	17	1	-	-	-	-	-
Falcon 900LX	-	-	-	-	-	-	-	4	11	7	11	8	-	-
Falcon 2000	12	11	6	6	1	-	-	-	-	-	-	-	-	-
Falcon 2000DX	-	-	-	-	-	3	1	-	-	-	-	-	-	-
Falcon 2000EX	16	10	-	-	-	-	-	-	-	-	-	-	-	-
Falcon 2000EX EASy	-	19	21	30	33	24	3	-	-	-	-	-	-	-
Falcon 2000LX	-	-	-	-	-	-	23	30	20	22	8	-	-	-
Falcon 2000LXS	-	-	-	-	-	-	-	-	-	-	3	18	-	-
Falcon 2000S	-	-	-	-	-	-	-	-	-	-	12	13	-	-
Falcon 7X	-	-	-	-	6	21	32	41	31	37	43	27	-	-
Falcon 2000S/2000LXS/900LX/7X/8X	-	-	-	-	-	-	-	-	-	-	-	-	55	49
Embraer	13	13	20	27	36	38	122	145	99	99	119	116	120	117
Phenom 100/E	.		.	.	-	2	97	100	41	29	30	19	12	10
Phenom 300	-	-	-	-	-	-	1	26	42	48	60	73	70	63
Legacy 450	-	-	-	-	-	-	-	-	-	-	-	-	3	12
Legacy 500	-	-	-	-	-	-	-	-	-	-	-	3	20	21
Legacy 600/650	13	13	20	27	36	36	18	11	13	17	21	18	12	9
Lineage 1000/E190 Head of State	-	-	-	-	-	-	5	5	3	2	4	3	3	2
Shuttles (ERJs and E-Jets)	-	-	-		-		1	3	0	3	4	0	0	0
Emivest (prev. Sino Swearingen)	0	0	0	1	1	0	2	0	0	0	0	0	0	0
SJ30-2	-	-	-	1	1	0	2	0	0	0	0	0	0	0
Gulfstream Aerospace Corporation	74	78	89	113	138	156	94	99	99	94	144	150	154	115
G100/150 (prev. IAl Astra) G200 (prev. IAI Galaxy)	24	22	26	42	59	68	19	24	21	11	23	33	34	27
G300/350/400/450 (prev. GIV/GIVSP) G500/G550 (prev. GV/GVSP), G650	50	56	63	71	79	88	75	75	78	83	121	117	120	88
Honda Aircraft Company	0	0	0	0	0	0	0	0	0	0	0	0	2	23
HA-420 HondaJet	-	-	-	-	-	-	-	-	-	-	-	-	2	23
ONE Aviation Corp. (prev. Eclipse Aero)	0	0	0	1	98	161	0	0	0	0	0	12	7	8
Eclipse 500	-	-	-	1	98	161	-	-	-	-	-	-	-	-
Eclipse 550	-	-	-	-	-	-	-	-	-	-	-	12	7	8
Textron Aviation (Beechcraft)	100	115	141	140	162	160	98	73	52	32	6	0	0	0
Premier I/A	29	37	30	23	54	31	16	11	11	3	-	-	-	-
Hawker 400XP	24	28	53	53	41	35	11	12	1	-	-	-	-	-
Hawker 750		-	-	-	.	23	13	5	7	-	-	-	-	-
Hawker 800XP	47	50	58	8	-	-	-	-	1	-	-	-	-	-
Hawker 850XP	-	.	-	56	35	15	3	1	0	-	-	-	-	-
Hawker 900XP	-	-	-	-	32	50	35	28	22	17	-	-	-	-
Hawker 4000	-	-	-	-	-	6	20	16	10	12	6	-	-	-

CONTINUED ON NEXT PAGE
1.4a Worldwide Business Jet Shipments by Manufacturer (2003-2016) Continued

	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Textron Aviation (Cessna Aircraft)	196	181	247	307	388	466	289	178	183	181	139	159	166	178
CE-510 Citation Mustang	-	-	-	1	45	101	125	73	43	38	20	8	8	10
CE-525 Citation CJ1	22	20	14	-	-	-	-	-	-	-	-	-	-	-
CE-525 Citation CJ1+	.	.	4	25	34	20	14	3	2	-	-	-	-	-
CE-525 Citation M2	-	-	-	-	-	-	-	-	-	-	12	46	41	38
CE-525A Citation CJ2	56	27	23	1	-	-	-	-	-	-	-	-	-	-
CE-525A Citation CJ2+	-	-	-	36	44	56	21	17	15	19	15	2	-	-
CE-525B Citation CJ3	-	6	48	72	78	88	40	20	22	21	15	6	-	-
CE-525B Citation CJ3+	-	-	-	-	-	-	-	-	-	-	-	10	23	25
CE-525C Citation CJ4	-	-	-	-	-	-	-	19	48	44	33	28	33	29
CE-550 Citation Bravo	31	25	21	18	-	-	-	-	-	-	-	-	-	.
CE-560 Citation Encore	21	24	13	12	-	-	-	-	-	-	-	-	-	-
CE-560 Citation Encore+	-	-	-	-	23	28	5	5	4	-	-	-	-	-
CE-560 Citation Excel	48	23	-	-	-	-	-	-	-	-	-	-	-	-
CE-560 Citation XLS	-	32	64	73	82	72	7	-	-	-	-	-	-	-
CE-560 Citation XLS+	-	-	-	-	-	8	37	22	27	31	31	22	21	19
CE-680 Citation Sovereign	-	9	46	57	65	77	33	16	19	22	5	-	.	-
CE-680 Citation Sovereign+	-	-	-	-	.	-	.	.	-	.	8	28	18	11
CE-680A Citation Latitude	-	-	-	-	-	-	-	-	-	-	-	-	16	42
CE-750 Citation X	18	15	14	12	17	16	7	3	3	6	-	-	-	-
CE-750 Citation $\mathrm{X}+$	-	-	-	-	-	-	-	-	-	-	-	9	6	4
Total Number of Airplanes	518	592	750	887	1,137	1,317	874	767	696	672	678	722	718	661
\% Change	-23.4\%	14.3\%	26.7\%	18.3\%	28.2\%	15.8\%	-33.6\%	-12.2\%	-9.3\%	-3.4\%	0.9\%	6.5\%	-0.6\%	-7.9\%
Total Billings for Airplanes (\$M)	8,616	10,404	13,161	16,555	19,347	21,948	17,443	18,000	17,235	17,108	21,058	22,015	21,877	18,353
\% Change	-17.4\%	20.7\%	26.5\%	25.8\%	16.9\%	13.4\%	-20.5\%	3.2\%	-4.2\%	-0.7\%	23.1\%	4.5\%	-0.6\%	-16.1\%

1.4b Worldwide Turboprop Airplane Shipments by Manufacturer (2003-2016)

		2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
	Air Tractor	n/a	130	168	174	145	113	112							
	AT-402A	n/a	0	1	0	0	0	4							
	AT-402B	n/a	9	21	33	20	11	10							
	AT-502A	n/a	3	1	2	1	0	8							
	AT-502B	n/a	57	81	70	61	36	22							
	AT-504	n/a	4	6	2	3	3	1							
	AT-602	n/a	10	10	18	14	14	16							
	AT-802	n/a	26	18	9	10	8	5							
	AT-802A	n/a	21	30	40	36	29	40							
	AT-802AF	n/a	10	3											
	AT-802F	n/a	2	3											
	AVIC General	0	0	0	0	0	0	0	0	0	0	0	0	0	6
	Y12 Series	n/a	6												
	Daher	34	31	31	42	46	60	36	38	38	38	40	51	55	54
O	TBM 700	34	31	31	-	-	-	-	-	-	-	-	-	-	-
\pm	TBM 850	-	-	-	42	46	60	36	38	38	38	40	-	-	-
\bigcirc	TBM 900	-	-	-	-	-	-	-	-	-	.	.	51	55	8
2	TBM 930	-	-	-	-	-	-	-	-	-	-	-	-	-	46
走	Extra Aircraft	0	0	0	0	0	0	0	0	0	2	1	2	0	0
$\frac{7}{0}$	EA500	-	-	-	-	-	-	-	-	-	2	1	2	-	-
S	Maule Air Incorporated	1	2	0	0	0	1	0	0	0	0	0	0	0	0
$\stackrel{ }{ }$	M-7-420AC	0	0	0	0	0	1	0	0	0	0	0	0	0	0
$\bar{\circ}$	MT-7-420	1	2	0	0	0	0	0	0	0	0	0	0	0	0
N	Pacific Aerospace Corporation	2	8	10	5	10	15	12	11	10	10	6	4	5	8
∞	PAC 750XL	2	8	10	5	10	15	12	11	10	10	6	4	5	8
-	Piaggio Aerospace	12	16	14	19	21	30	24	11	14	5	2	2	3	3
-	P. 180 Avanti	12	16	13	-	-	-	-	-	-	-	-	-	-	-
${ }_{7}^{0}$	P. 180 Avantill	-	-	1	19	21	30	24	11	14	5	2	2	-	-
$\stackrel{0}{0}$	P. 180 Avanti Evo	-	-	-	-	-	-	-	-	-	-	-	-	3	3
	Pilatus	61	70	80	90	98	100	105	84	69	67	69	76	74	100
.	PC-6 Porter	n/a	n/a	n/a	n/a	6	3	5	5	6	5	4	10	4	9
*	PC-12	61	70	80	90	92	97	100	79	63	62	65	66	70	91
\%	Piper Aircraft, Inc.	24	26	40	49	53	52	29	25	32	32	34	36	27	34
$\stackrel{\sim}{\sim}$	PA-46-500 TP Meridian/M500	24	26	40	49	53	52	29	25	32	32	34	36	27	12
	PA-46-600 TP M600	-	-	-	-	-	-	-	-	-	-	-	-	-	22
-	Quest Aircraft Company	0	0	0	0	1	7	24	14	13	15	28	30	32	36
. $\frac{\pi}{3}$	Kodiak 100	-	-	-	-	1	7	24	14	13	15	28	30	32	36
¢	Textron Aviation (Beechcraft)	81	102	114	140	157	172	119	90	92	89	135	127	117	106
\cdots	King Air C90	18	27	35	52	46	66	44	28	29	27	27	21	15	11
$\stackrel{\square}{0}$	King Air B200 / B250	38	39	37	42	58	54	37	24	25	22	36	35	28	32
$\stackrel{\square}{0}$	King Air 350	24	36	42	46	53	52	38	38	38	40	72	71	74	63
\checkmark	1900D	1	-	-	-	-	-	-	-	-	-	-	-	-	-
\bigcirc	Textron Aviation (Cessna Aircraft)	57	64	86	67	79	101	97	95	93	107	105	94	102	84
-	CE-208 Caravan 675	8	13	11	8	11	12	12	8	10	11	11	13	9	13
N	CE-208B Grand Caravan	49	51	75	59	68	89	85	87	83	96	94	81	93	71

1.4b Worldwide Turboprop Airplane Shipments by Manufacturer (2003-2016) Continued

	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Thrush Aircraft, Inc.	n/a	35	51	51	36	29	39							
S2R-T34	n/a	30	39	20	10	8	10							
S2RHG-T65	n/a	1	0	1	0	0	2							
S2R-T660	n/a	1	0	1	1	7	17							
S2R-G10	n/a	3	3	2	1	0	0							
S2R-H80	n/a	0	9	27	24	14	10							
Total Number of Airplanes	272	319	375	412	465	538	446	368	526	584	645	603	557	582
\% Change	-2.9\%	17.3\%	17.6\%	9.9\%	12.9\%	15.7\%	-17.1\%	-17.5\%	n/a	11.0\%	10.4\%	-6.5\%	-7.6\%	3.4\%
Total Billings for Airplanes (\$M)	837	997	1,189	1,389	1,593	1,953	1,589	1,300	1,365	1,359	1,821	1,849	1,651	1,705
\%Change	-3.5\%	19.1\%	19.3\%	16.9\%	14.6\%	22.7\%	-18.7\%	-18.2\%	n/a	-0.4\%	33.9\%	1.5\%	-10.7\%	3.3\%

1.4c Worldwide Piston-Engine Airplane Shipments by Manufacturer (2003-2016)

	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Adam Aircraft	0	0	2	4	3	0	0	0	0	0	0	0	0	0
A500	-	-	2	4	3	-	-	-	-	-	-	-	-	-
Air Tractor	0	0	0	0	0	0	0	0	0	1	0	1	1	0
AT-401B	-	-	-	-	-	-	-	-	-	1	0	1	1	0
Alpha Aviation	0	0	0	5	13	1	0	0	0	0	0	0	0	0
120 T	-	-	-	-	2	-	-	-	-	-	-	-	.	-
160A	-	-	-	5	9	1	-	-	-	-	-	-	-	-
160 Ai	-	-	-	-	2	0	-	-	-	-	-	-	-	-
American Champion	63	94	89	60	70	54	26	37	29	18	26	30	19	19
7EC Champ	-	-	-	1	21	7	1	0	3	0	3	1	1	2
7ECA Aurora	2	2	3	2	4	3	2	2	1	0	0	2	1	0
7GCAA Adventurer	9	12	12	6	6	2	1	2	0	0	0	0	0	0
7GCBC Citabria Explorer	12	24	26	16	8	8	4	4	6	3	1	3	0	1
8GCBC Scout	8	18	9	14	8	10	8	15	13	7	6	7	6	10
8KCAB Super Decathlon	32	38	39	21	23	24	10	14	6	8	10	14	6	6
8KCAB Xtreme Decathlon			-	.	-	-	-	-	-	-	6	3	5	0
Aviat Aircraft	47	42	47	0	0	0	0	0	0	0	0	0	0	0
A-1B Husky	37	30	41	n/a										
Husky Pup	3	3	1	n/a	n / a									
S-2C Pitts	7	9	5	n/a										
AVIC General	0	0	0	0	0	0	0	0	0	0	0	0	0	26
YB5	n/a	4												
LE500	n/a	11												
A2C	n/a	11												
Columbia Aircraft (prev. Lancair)	51	78	114	185	152	0	0	0	0	0	0	0	0	0
Columbia 300	19	-	-	-	-	-	-	-	-	-	-	-	-	-
Columbia 350	32	28	25	39	34	-	-	-	-	-	-	-	-	-
Columbia 400	-	50	89	146	118	-	-	-	-	-	-	-	-	-
Cirrus Aircraft	469	553	600	721	710	549	266	264	255	253	276	308	301	317
Cirrus SR20	112	91	116	150	112	115	28	42	48	84	32	31	31	35
Cirrus SR22	355	459	475	565	588	427	238	165	105	81	112	117	128	133
Cirrus SR22T	-	-	-	-	-	-	-	57	102	88	132	160	142	149
Cirrus SRV	2	3	9	6	10	7	-	.	-	-	-	-	-	-
CubCrafters	n/a	47	58	63	60	52	26							
CC11-100 Sport Cub S2	n/a	2	0	2	0	0	0							
CC11-160 Carbon Cub SS	n / a	n/a	38	57	52	53	47	24						
CC18-180 Top Cub	n/a	7	1	9	7	5	2							
CC19-180 XCub	-	-	-	-	-	-	-	-	-	-	-	-	-	8
Daher	40	5	9	0	0	0	0	0	0	0	0	0	0	0
TB-9 Tampico	2	0	1	.	-	-	-	-	-	-	-	-	-	-
TB-10	7	3	4	-	-	-	-	-	-	-	-	-	-	-
TB-20	19	0	1	-	-	-	-	-	-	-	-	-	-	-
TB-21	9	2	3	-	-	-	-	-	-	-	-	-	-	-
TB-200	3	0	0	-	-	-	-	-	-	-	-	-	-	-
Diamond Aircraft	228	261	329	438	471	308	163	130	185	156	139	202	144	132
HK-36	-	-	-	-	-	-	13	10	3	3	1	0	1	0
DA-20	75	58	54	55	58	69	14	31	40	32	14	16	22	20
DA-40	153	203	207	220	232	154	98	57	72	93	102	136	75	48
DA-42	-	-	68	163	181	85	38	32	70	28	22	50	44	34
DA-62	-	-	-	-	-	-	-	-	-	-	-	-	2	30
Discovery Aviation (prev. Liberty)	0	0	2	29	38	33	13	14	3	0	0	0	0	0
XL2	-	-	2	29	38	33	13	14	3	0	0	0	0	0
Extra Aircraft	n/a	27	29	31	27	27								
EA300	n/a	27	29	31	27	27								
Flight Design GmbH	n/a	89	76	89	88	59	23							
ASTM CT Series	n/a	89	76	89	88	59	23							
Mahindra Aerospace (prev. GippsAero)	19	20	22	20	17	19	11	14	10	14	12	17	14	9
Airvan 8	19	20	22	20	17	19	11	14	10	14	12	17	14	9

CONTINUED ON NEXT PAGE

	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Maule Air Incorporated	31	25	27	38	36	27	7	4	4	9	6	2	13	3
M-4-180A, V		-	1	7	5	-	-	-	-	.	.	1	.	-
M-7-235, A, B, C	12	8	11	8	6	7	1	3	-	1	-	1	-	1
M-7-260, C	4	3	4	2	4	4	4	.	1	3	4	-	-	1
MT-7-235	7	1	2	9	2	6	2	-	-	1	-	-	-	-
MT-7-260	-	-	2	4	-	-	.	-	-	-	-	-	-	-
MX-7-180, A, B, C, AC	6	5	3	4	6	4	-	1	1	1	1	-	12	1
MXT-7-160	-	-	-	-	-	.	-	-	-	-	-	-	-	-
MXT-7-180, A, AC	2	8	4	4	12	6	-	-	2	3	-	-	-	-
M-8-235	-	-	-	-	1	-	-	-	-	-	-	-	-	-
M-9-235	-	-	-	-	-	-	-	-	-	-	1	-	1	-
Mooney International Corporation	36	37	85	75	79	65	19	2	0	0	0	1	11	7
M20M Bravo	5	9	20	5	1	-	-	.	-	-	-	-	.	-
M20R Ovation		-	-	-	-	-	-	-	-	-	-	-	-	-
M20R Ovation 2	30	28	65	63	20	21	4	0	0	0	0	0	3	1
M20S Eagle 2	1	-	-	-	-	-	-	-	-	-	-	-	8	-
M20TN Acclaim	-	-	-	7	58	44	15	2	0	0	0	1	0	6
Pacific Aerospace Corporation	0	6	0	0	0	0	0	0	0	0	0	0	0	0
CT/4E Airtrainer	-	6	-	-	-	-	-	-	-	-	-	-	-	-
Piper Aircraft, Inc.	205	163	193	189	168	216	61	135	104	126	154	136	111	93
PA-28-161 Warrior III	31	18	37	19	27	23	8	23	15	20	2	3	20	5
PA-28-181 Archer III	49	19	16	29	16	7	1	21	2	4	48	45	25	42
PA-28R-201 Arrow IV	16	12	9	5	8	1	0	4	0	2	1	8	5	7
PA-32-301FT Piper 6X	10	24	18	10	12	0	-	-	-	.	-	-	-	-
PA-32-301XTC Piper 6XT	11	14	16	11	-	-	-	-	-	-	-	-	-	-
PA-32R-301 Saratoga II HP	9	9	8	10	-	-	-	-	-	-	-	-	-	-
PA-32-301T Saratoga II TC	28	31	37	37	39	12	-	-	-	-	-	-	-	-
PA-34-220T Seneca V	28	10	12	26	22	27	7	22	21	17	22	10	8	3
PA-44-180 Seminole	16	11	29	11	14	24	5	16	16	22	23	22	17	10
PA-46-350P Malibu Mirage/M350	7	15	11	31	30	21	7	26	33	49	42	37	34	26
PA-46R-350T Matrix	-	-	-	-	-	101	33	23	17	12	16	11	2	0
Quartz Mountain Aerospace	0	0	0	0	0	11	0	0	0	0	0	0	0	0
QMA 11E	-	-	-	-	-	11	-	-	-	-	-	-	-	-
Symphony Aircraft (prev. OMF)	19	1	10	5	0	0	0	0	0	0	0	0	0	0
Symphony 160	19	1	10	5	-	-	-	-	-	-	-	-	-	-
TECNAM Aircraft	n/a	197	190	191	191									
ASTM - LSA	n/a	n/a	n/a	n/a	n / a	n/a	n/a	n/a	n/a	n/a	108	108	102	73
P2002JF	n/a	n/a	n/a	n/a	n / a	n/a	n/a	n/a	n/a	n/a	33	18	20	33
P92JS	n/a	15	7	4	7									
P2002JR	n/a	2	0	0	0									
P2008JC	n/a	19	36	24	24									
P2006T	n/a	20	21	21	32									
P2010P Twenty Ten	-	-	-	-	-	-	-	-	-	-	-	-	20	22
Textron Aviation (Beechcraft)	82	93	99	118	111	103	56	51	54	36	70	72	41	45
Beechcraft Bonanza A/G36	55	62	71	80	73	63	36	22	24	12	35	32	23	25
Beechcraft Bonanza B36TC	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Beechcraft Baron B/G58	27	31	28	38	38	40	20	29	30	24	35	40	18	20
Textron Aviation (Cessna Aircraft)	588	654	822	865	807	733	355	261	413	283	206	220	271	217
CE-162 SkyCatcher	-	-	-	-	-	-	1	22	168	19	-	-	-	-
CE-172R Skyhawk	58	32	37	87	133	55	16	8	26	27	0	0	-	-
CE-172S Skyhawk	291	204	314	322	240	228	110	77	77	113	106	155	143	100
CE-182T Skylane	118	196	241	140	161	109	58	64	40	48	13	0	33	50
CE-T182T Turbo Skylane	47	133	118	187	140	105	75	36	37	19	26	0	-	.
CE-206H Stationair	16	22	29	25	20	17	3	4	11	16	3	0	-	-
CE-T206H Turbo Stationair	58	67	83	104	111	95	46	42	53	40	37	43	51	36
CE-350 Corvalis	-	-	-	-	1	14	5	1	0	1	0	0	-	-
CE-240 TTx (prev. CE-400 Corvalis TTx)	-	-	-	-	1	110	41	7	1	0	21	22	44	31
Tiger Aircraft	18	19	15	3	0	0	0	0	0	0	0	0	0	0
AG-5B Tiger	18	19	15	3	-	-	-	-	-	-	-	-	-	-
WACO Classic Aircraft	n/a	5	6	7	11	10	7							
2T-1A-2	-	-	-	-	-	-	-	-	-	-	1	6	6	3
YMF-5D	n/a	5	6	6	5	4	4							
XtremeAir GmbH	n/a	9	9	8	9	0	0							
XA41	n/a	n/a	n/a	n/a	n / a	n/a	n/a	n/a	4	2	2	0	n/a	n/a
XA42	n/a	5	7	6	9	n/a	n/a							
Total Number of Airplanes	1,896	2,051	2,465	2,755	2,675	2,119	977	912	1,207	1,072	1,282	1,378	1,265	1,142
\%Change	10.2\%	8.2\%	20.2\%	11.8\%	-2.9\%	-20.8\%	-53.9\%	-6.7\%	n/a	-11.2\%	n/a	7.5\%	-8.2\%	-9.7\%
Total Billings for Airplanes (\$M)	545	692	805	857	897	945	442	415	441	428	571	635	601	661
\% Change	12.9\%	27.0\%	16.3\%	6.5\%	4.7\%	5.3\%	-53.1\%	-7.7\%	n/a	-3.0\%	n/a	11.1\%	-5.3\%	10.0\%

1.4d Worldwide Rotorcraft Shipments by Manufacturer (2003-2016) Civil-Commercial and Military-Government Combined

	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Airbus Helicopters	n/a	507	440	451	418	360	380							
HC120 (prev. EC120)	n/a	10	11	12	7	2	5							
AS350 B2	n/a	59	36	32	23	9	7							
H125/H125M (prev. EC125/AS350 B3e/AS550 C3e)	n/a	150	130	187	134	95	104							
H130 (prev. EC130)	n/a	42	43	35	58	69	54							
AS355 NP/AS555 AP	n/a	7	8	5	3	3	7							
H135/H135M (prev. EC135/EC635)	n/a	74	67	48	42	35	40							
H145/H145M (prev. EC145/EC645/UH-72A)	n/a	89	82	69	73	68	107							
AS365 N3/AS565 Mbe	n/a	14	11	8	4	7	11							
H155 (prev. EC155)	n/a	12	7	10	10	10	3							
H175 (prev. EC175)		-		-		-			-	-	-	3	4	4
H215/H215M (prev. AS332/AS532)	n/a	4	3	4	6	7	10							
H225/H225M (prev. EC225/EC725)	n/a	26	32	30	43	35	9							
TIGER	n/a	20	10	11	12	16	19							
Bell Helicopter	105	111	123	159	181	n/a	n/a	132	125	188	213	178	223	171
206B	10	7	16	20	28	-	-	5	-	-	-	-	-	-
206L/LT	6	18	22	21	24	-	-	15	14	9	11	13	12	10
407/GX/GXP	46	40	41	67	73	-	-	62	55	85	110	86	99	57
412/EP/EPI	29	33	29	35	39	-	-	28	20	39	36	26	12	10
427	7	9	5	7	10	-	-	1	4	4	-	-	-	-
429/WLG	-	-	-	-	-	-	-	20	28	43	56	53	52	28
430	7	4	10	9	7	-	-	-	-	-	.	.	.	-
Huey II	-	-	-	-	-	-	-	1	4	8	-	-	-	9
H-1	n/a	28	21	25	24	24	35							
V22	n/a	35	38	41	37	24	22							
Brantly	1	0	2	0	0	0	0	0	0	0	0	0	0	0
B-2B	1	0	2	0	0	0	0	0	0	0	0	0	0	0
Enstrom Helicopter Corp.	17	23	29	23	19	10	6	4	n/a	16	27	26	20	12
F-28/280	7	5	15	10	6	1	1	1	n/a	2	4	2	5	3
480	10	18	14	13	13	9	5	3	n/a	14	23	24	15	9
Hélicoptères Guimbal	0	0	0	0	0	n/a	n/a	n/a	n/a	n/a	n/a	27	44	50
Cabri G2	-	-	-	-	-	n/a	n/a	n/a	n/a	n/a	n/a	27	44	50
Leonardo Helicopters (prev. AgustaWestland)	n/a	214	180	160	n/a									
AW119Ke	n/a	22	17	16	n/a									
AW109Power	n/a	9	7	8	n/a									
GRANDNEW	n/a	35	14	14	n/a									
AW139	n/a	118	101	72	n/a									
AW169	-	-	-	-		-	-		-	-	-	-	1	n/a
AW189	n/a	0	10	16	n/a									
AW159	n/a	15	11	13	n/a									
SUPER LYNX	-	-	-	-	-	-	-	-	-	-	-	-	4	n/a
T129	n/a	0	5	4	n/a									
AW101	n/a	5	5	5	n/a									
CH47F	n/a	0	5	3	n/a									
SW4	n/a	0	0	0	n/a									
W3	n/a	10	5	4	n/a									
MD Helicopters	16	10	3	13	18	52	40	12	n/a	n/a	n/a	n/a	n/a	n/a
500	3	1	0	n/a	3	n/a								
520 N	1	0	2	n/a	3	n/a								
530	3	1	0	n/a	2	n/a								
600	1	4	1	n/a	3	n/a								
900	8	4	0	n/a	7	n/a								
NH Industries	n/a	33	35	43	53	35	38							
NH90	n/a	33	35	43	53	35	38							
Robinson Helicopter Company	422	690	806	749	823	893	433	162	356	517	523	329	347	234
R22	128	234	243	97	159	164	25	40	56	40	42	42	34	19
R44 Raven I/ II	294	456	563	652	664	729	408	112	212	286	289	186	196	152
R66	-	-	-	-	-	-	-	10	88	191	192	101	117	63
Schweitzer	38	48	58	61	70	51	27	29	n/a	n/a	0	0	0	0
300 C	20	13	12	12	11	16	10	14	n/a	n/a	-	.	.	.
$300 \mathrm{CB} / 300 \mathrm{CBi}$	15	27	40	44	51	27	13	6	n/a	n/a	-	-	-	-
330/333	3	8	6	5	8	8	4	9	n/a	n/a	-	-	-	-
Sikorsky	23	34	49	52	79	78	58	42	249	227	231	231	178	181
S-70	0	1	0	0	0	0	0	0	0	0	0	0	0	0
S-76	23	29	30	36	50	53	34	21	16	5	26	17	13	5
S-92	0	4	19	16	29	25	24	21	20	30	37	42	16	7
Blackhawk	n/a	125	123	106	133									
Seahawk	n/a	43	49	43	36									
Military (Model Detail Not Available)	n/a	213	192	-	-	-	-							
Total Number of Rotorcraft	n/a	1,768	1,501	1,367	n/a									
\% Change	n/a	-15.1\%	-8.9\%	n/a										

Leonardo Helicopters Q 4 data was not available at time of publication. Q 4 data will be published in March by Leonardo.
GAMA will update the online 2016 shipment report then at www.GAMA.aero
Source: GAMA, Aerospace Industries Association, and company report.
1.5 U.S.-Manufactured General Aviation Airplane Shipments by Type (1947-2016)

1.6 U.S.-Manufactured General Aviation Airplane Billings (in Millions of Dollars) by Type (2000-2016)

Year	Grand Total	Single-Engine Piston	Multi-Engine Piston	Total Piston	Turboprop	Business Jet	Total Turbine
2000	8,558	n/a	n/a	446	934	7,178	8,112
2001	8,641	n/a	n/a	471	742	7,428	8,170
2002	7,719	n/a	n/a	389	487	6,843	7,330
2003	6,434	n/a	n/a	440	411	5,583	5,994
2004	6,816	n/a	n/a	568	555	5,693	6,248
2005	8,667	n/a	n/a	712	749	7,205	7,954
2006	10,367	n/a	n/a	722	853	8,792	9,645
2007	11,941	n/a	n/a	712	1,001	10,227	11,228
2008	13,348	n/a	n/a	836	1,172	11,340	12,513
2009	9,082	n/a	n/a	389	872	7,821	8,693
2010	7,875	n/a	n/a	368	724	6,782	7,506
2011	8,266	n/a	n/a	368	831	7,068	7,898
2012	8,017	n/a	n/a	374	867	6,776	7,643
2013	11,069	n/a	n/a	456	1,358	9,255	10,613
2014	11,688	n/a	n/a	484	1,316	9,888	11,204
2015	11,982	n/a	n/a	477	1,282	10,224	11,506
2016	10,577	n/a	n/a	511	1,180	8,886	10,067

Source: GAMA
1.7 U.S.-Manufactured General Aviation Airplane Exports by Type and Billings (2000-2016)

Year	Single-Engine Piston	Multi-Engine Piston	Turboprop	Business Jet	Total Airplanes Exported		Billings Exported	
					Units	\% of Shipments	(in \$ Millions)	\% of Total Billings
2000	285	24	112	148	569	20.2\%	\$1,957.5	22.9\%
2001	175	42	118	170	505	19.2\%	\$2,380.6	27.5\%
2002	135	23	79	136	372	16.8\%	\$1,980.9	25.4\%
2003	168	22	52	94	336	15.7\%	\$1,218.2	18.9\%
2004	181	9	55	88	333	14.1\%	\$1,419.6	20.8\%
2005	301	18	66	172	557	19.5\%	\$2,585.9	29.8\%
2006	535	30	74	252	891	28.3\%	\$4,395.5	42.4\%
2007	665	33	131	313	1,142	34.8\%	\$4,587.0	38.4\%
2008	556	40	175	410	1,161	37.7\%	\$5,863.8	43.9\%
2009	341	15	121	255	732	46.2\%	\$4,612.7	50.8\%
2010	299	45	151	194	689	51.6\%	\$4,867.8	61.8\%
2011	249	50	121	112	486	36.3\%	\$4,585.8	55.5\%
2012	263	40	243	174	720	47.7\%	\$4,791.1	59.8\%
2013	255	49	245	142	691	42.8\%	\$5,616.9	50.7\%
2014	273	37	248	138	696	42.7\%	\$5,419.2	46.4\%
2015	170	23	203	128	524	32.9\%	\$5,431.2	45.3\%
2016	161	12	156	124	453	29.7\%	\$4,451.3	42.1\%

1.8 European-Manufactured General Aviation Airplane Shipments by Type (2008-2016)

Year	Grand Total	Single-Engine Piston	Multi-Engine Piston	Total Piston	Turboprop	Business Jet	Total Turbine	Companies Reporting	Factory Net Bllings (\$ Millions)
2008	579	223	85	308	190	81	271	6	\$3,966.6
2009	416	125	38	163	165	88	253	6	\$4,552.5
2010	380	98	41	139	133	108	241	6	\$5,556.0
2011	468	204	70	274	121	73	194	7	\$3,987 . 9
2012	446	231	28	259	112	75	187	8	\$4,063 . 3
2013	657	420	42	462	112	83	195	10	\$4,533.9
2014	722	449	71	520	131	71	202	10	\$3,825.3
2015	612	354	67	421	132	59	191	9	\$3,736.2
2016	580	277	96	373	157	50	207	9	\$3,008.6

[^0]require production approvals for all aircraft including CS-VLA and CS-SLSA models.

Canada and U.S. General Aviation Fleet, Flight Activity, and Forecast

2.1 Canada—Registered Aircraft by Type and Weight Group (1983-2016)

Year	Number of Registered Aircraft by Type									By Weight Group		Total Aircraft
	Aeroplanes	Ultralights	Amateur-Builts	Helicopters	Gliders	Balloons	Gyroplanes	Airships	Ornithopters	$\leq 12,500 \mathrm{lbs}$	12,500 $>$ lbs	
1983	22,354	1,282	n/a	1,410	560	177	116	n/a	n/a	n/a	n/a	25,899
1984	22,330	1,971	n/a	1,326	572	197	118	n/a	n/a	n/a	n/a	26,514
1985	22,231	2,376	n/a	1,276	582	219	117	n/a	n/a	n/a	n/a	26,801
1986	22,105	2,706	n/a	1,264	589	247	116	n/a	n/a	n/a	n/a	27,027
1987	22,270	2,946	n/a	1,299	602	279	121	n/a	n/a	n/a	n/a	27,517
1988	22,469	3,105	n/a	1,338	613	308	122	n/a	n/a	n/a	n/a	27,955
1989	22,463	3,212	n/a	1,366	614	339	127	n/a	n/a	n/a	n/a	28,121
1990	22,278	3,363	n/a	1,416	609	361	128	n/a	n/a	27,173	982	28,155
1991	21,973	3,477	n/a	1,433	601	384	135	n/a	n/a	23,553	981	28,003
1992	21,795	3,607	n/a	1,502	602	405	155	n/a	n/a	27,070	996	28,066
1993	21,452	3,744	n/a	1,533	597	424	162	n/a	n/a	26,977	935	27,912
1994	21,212	3,840	n/a	1,582	601	444	169	n/a	n/a	26,885	963	27,848
1995	21,169	3,956	n/a	1,605	601	440	166	n/a	n/a	26,914	1,023	27,937
1996	21,089	4,070	n/a	1,643	592	440	168	n/a	n/a	26,919	1,084	28,002
1997	20,985	4,208	n/a	1,655	587	450	169	n/a	n/a	26,862	1,192	28,054
1998	20,830	4,305	2,457	1,676	592	440	174	n/a	n/a	26,809	1,208	28,017
1999	20,768	4,346	2,540	1,711	596	442	181	2	1	26,783	1,264	28,047
2000	25,256	4,467	2,621	1,753	600	444	186	2	1	26,922	1,320	28,242
2001	25,435	4,584	2,709	1,798	613	453	190	3	1	27,171	1,322	28,493
2002	25,650	4,746	2,778	1,831	617	453	189	3	1	27,374	1,370	28,744
2003	25,902	4,922	2,895	1,894	674	450	188	3	1	27,752	1,360	29,112
2004	26,335	5,123	2,996	1,940	686	459	189	4	1	28,166	1,448	29,614
2005	26,870	5,339	3,124	2,019	683	475	192	4	1	28,745	1,499	30,244
2006	27,512	5,568	3,255	2,145	687	478	191	4	1	29,422	1,596	31,018
2007	28,195	5,745	3,380	2,317	695	481	192	5	1	30,223	1,663	31,886
2008	29,043	5,985	3,514	2,504	703	486	191	5	1	31,154	1,779	32,933
2009	29,567	6,184	3,639	2,576	715	479	190	5	1	31,709	1,824	33,533
2010	30,118	6,396	3,748	2,658	713	486	194	5	1	32,330	1,845	34,175
2011	30,805	6,585	3,885	2,728	720	490	198	5	1	32,986	1,961	34,947
2012	31,341	6,803	3,984	2,776	722	500	195	5	1	33,563	1,977	35,540
2013	31,780	6,973	4,074	2,849	726	511	206	5	1	34,050	2,028	36,078
2014	32,045	7,125	4,141	2,871	725	517	214	1	1	34,310	2,064	36,374
2015	32,127	7,246	4,185	2,853	721	516	222	0	1	34,359	2,081	36,440
2016	32,138	7,355	4,213	2,836	717	517	227	0	1	34,355	2,081	36,436

Source: Transport Canada and Canadian Civil Aircraft Registry, www.tc.gc.ca

2.2 Active U.S. General Aviation and On-Demand Part 135 Aircraft by Primary Use and Aircraft Type (2015)

		General Aviation FAR Part 91 Use												On-Demand FAR Part 135 Use		
Aircraft Type	Total Active (76.7\% of 273,663)	Personal/ Recreational	$\begin{aligned} & \text { Business } \\ & \text { (w/o } \\ & \text { crew) } \end{aligned}$	Business (with crew)	Instructional	Aerial Apps.	Aerial Obs.	Other Aerial App.	External Load	Other Work	Sightseeing	Air Medical	Other	Air Taxi	Air Tours	Air Medical
Total All Aircraft	210,030	139,700	15,887	11,276	15,667	3,303	5,477	870	321	1,272	1,164	516	5,674	6,494	521	1,887
\% Std. Error	1.4\%	2.0\%	1.6\%	. 9%	1.6\%	1.0\%	1.1\%	0.9\%	0.8\%	1.5\%	1.4\%	1.5\%	1.3\%	0.7\%	0.7\%	0.6\%
Piston Total	141,141	104,669	12,474	1,446	12,182	991	2,531	253	0	727	310	386	3,365	1,567	199	39
One-Engine Piston	127,887	97,811	9,964	705	10,800	958	2,121	196	0	714	294	328	2,908	913	173	2
Two-Engine Piston	13,254	6,859	2,510	741	1,382	34	411	58	0	13	16	57	457	654	26	36
Turboprop Total	9,712	1,263	1,237	2,342	162	1,729	278	229	0	135	3	14	522	1,548	13	238
One-Engine Turboprop	4,391	600	544	410	43	1,713	23	115	0	36	0	4	298	545	13	49
Two-Engine Turboprop	5,321	663	693	1,932	119	16	255	113	0	100	3	10	224	1,003	0	189
Business Jet	13,440	1,537	1,047	6,814	185	0	37	64	0	186	0	9	696	2,675	0	190
Rotorcraft Total	10,506	1,277	336	640	1,603	521	2,482	299	321	43	133	81	379	684	291	1,417
Piston Total	3,286	903	207	48	1,215	210	251	22	8	3	117	0	232	61	8	0
Turbine Total	7,220	374	129	591	388	311	2,231	278	313	40	15	81	146	623	283	1,417
- One-Engine Turbine	5,458	311	122	111	349	272	2,122	258	228	30	15	16	99	421	272	833
- Two-Engine Turbine	1,762	63	7	481	40	38	109	20	86	10	0	65	48	202	11	584
Gliders	1,870	1,455	0	0	360	0	0	0	0	0	40	0	15	0	0	0
Lighter-Than-Air	3,071	2,268	9	4	158	0	0	0	0	27	582	2	8	0	13	0
Experimental Total	27,922	25,284	739	31	697	59	128	22	0	147	96	23	669	19	6	4
Amateur-Built	21,195	19,438	616	5	541	36	76	3	0	61	83	21	313	0	0	2
Exhibition	1,966	1,613	47	10	43	4	0	5	0	42	0	2	199	0	0	0
Exp. Light-Sport	3,942	3,730	10	0	88	2	23	0	0	21	2	0	66	0	0	0
Other Experimental	820	503	66	15	26	17	29	14	0	23	10	0	90	19	6	2
Special Light-Sport	2,369	1,948	45	0	320	2	22	2	0	7	0	0	21	2	0	0

2.3 U.S. General Aviation and On-Demand Part 135 Total Hours Flown by Use and Aircraft Type (2015)

		General Aviation FAR Part 91 Use												On-Demand FAR Part 135 Use		
Aircraft Type	Total Hours	Personal/ Recreational	$\begin{aligned} & \text { Business } \\ & \text { (w/o } \\ & \text { crew) } \end{aligned}$	Business (with crew)	Instructional	Aerial Apps.	Aerial Obs.	Other Aerial App.	External Load	Other Work	Sightseeing	Air Medical	Other	Air Taxi	Air Tours	Air Medical
Total All Aircraft	24,141,864	7,437,602	1,838,773	2,384,200	4,648,448	941,208	1,411,526	178,405	176,364	240,751	161,575	77,055	1,080,165	2,524,126	328,102	713,564
\% Std. Error	1.0\%	1.2\%	2.4\%	3.0\%	3.1\%	5.9\%	5.1\%	8.6\%	13.9\%	10.8\%	8.8\%	13.8\%	3.3\%	3.8\%	14.4\%	6.8\%
Piston Total	12,824,828	5,609,359	1,360,051	197,236	3,701,905	159,508	661,741	41,257	-	111,271	70,223	33,183	374,628	435,794	59,932	-
One-Engine Piston	11,217,005	5,183,934	1,122,293	90,023	3,238,268	156,541	562,895	31,246	-	110,368	67,141	25,448	315,529	255,007	56,042	-
Two-Engine Piston	1,607,823	425,425	237,758	107,214	463,637	2,967	98,846	10,011	-	902	3,082	-	59,099	180,787	3,890	6,469
Turboprop Total	2,537,913	190,019	174,073	437,374	65,930	631,979	77,694	50,374	-	55,177	707	4,241	116,301	620,101	5,934	108,009
One-Engine Turboprop	1,237,144	81,335	73,430	112,781	8,945	613,093	10,942	25,077	-	11,880	198	1,395	38,177	234,271	5,891	19,728
Two-Engine Turboprop	1,300,769	108,684	100,643	324,593	56,984	18,886	66,751	25,297	-	43,297	-	2,846	78,124	385,830	43	88,281
Business Jet	3,837,291	295,692	194,395	1,693,383	24,305	-	7,316	8,109	-	33,911	-	4,608	420,294	1,068,684	-	86,251
Rotorcraft Total	3,294,118	103,306	40,595	51,881	678,961	133,753	644,107	76,390	175,526	24,086	52,377	33,836	118,676	391,870	259,332	509,420
Piston Total	797,870	54,520	16,976	8,952	515,036	36,708	79,466	2,049	2,635	878	43,857	-	13,122	17,275	6,396	-
Turbine Total	2,496,247	48,786	23,619	42,929	163,925	97,045	564,641	74,341	172,891	23,208	8,520	33,836	105,554	374,595	252,936	509,420
- One-Engine Turbine	1,912,091	40,665	22,032	20,966	150,883	86,830	526,068	62,885	124,015	18,793	7,684	11,005	68,292	241,689	246,502	283,781
- Two-Engine Turbine	584,156	8,120	1,587	21,963	13,042	10,215	38,573	11,456	48,877	4,415	836	22,832	37,262	132,906	6,434	225,640
Gliders	94,370	60,879	-	-	27,132	-	-	-	-	-	5,005	-	-	-	-	-
Lighter-Than-Air	67,587	37,686	-	-	2,738	-	-	-	-	-	23,916	-	-	-	-	-
Experimental Total	1,294,985	1,024,594	64,853	-	84,509	-	-	-	-	14,905	8,879	-	44,292	-	-	-
Amateur-Built	999,670	821,049	55,818	-	68,605	-	3,993	-	-		7,016	-	27,131	-	-	-
Exhibition	76,331	58,086	672	-	2,512	-	-	-	-		882	-	7,180	-	-	-
Exp. Light-Sport	131,860	115,665		-	5,206	-	-	-	-	-		-	-	-	-	-
Other Experimental	87,124	29,794	5,697	-	8,187	6,452	12,102	1,454	-	4,627	942	-	5,288	6,862	-	-
Special Light-Sport	190,772	116,067	4,214	-	62,969	-	1,616	-	-	476	139	-	4,265	-	-	-

2.4 Active U.S. General Aviation and On-Demand Part 135 Aircraft by Type (1996-2015) and Forecast (2016-2025)

Year	Total Aircraft	Airplane			Rotorcraft		Balloons, Dirigibles, Cliders	Experimental	Light-Sport Aircraft		
		Piston	Turboprop	Business Jet	Piston	Turbine			Total	Experimental	Special
1996	191,129	153,551	5,716	4,424	2,507	4,063	4,244	16,625	-	-	-
1997	192,414	156,056	5,619	5,178	2,259	4,527	4,092	14,680	-	-	-
1998	204,710	162,963	6,174	6,066	2,545	4,881	5,580	16,502	-	-	-
1999	219,464	171,923	5,679	7,120	2,564	4,884	6,765	20,528	-	-	-
2000	217,534	170,513	5,762	7,001	2,680	4,470	6,701	20,407	-	-	-
2001	211,446	163,314	6,596	7,787	2,292	4,491	6,545	20,421	-	-	-
2002	211,244	161,087	6,841	8,355	2,351	4,297	6,377	21,936	-	-	-
2003	209,708	160,938	7,689	7,997	2,123	4,403	6,008	20,550	-	-	-
2004	219,426	165,189	8,379	9,298	2,315	5,506	5,939	22,800	-	-	-
2005	224,352	167,608	7,942	9,823	3,039	5,689	6,454	23,627	170	-	-
2006	221,942	163,743	8,063	10,379	3,264	5,895	6,278	23,047	1,273	-	-
2007	231,607	166,907	9,514	10,385	2,769	6,798	5,940	23,228	6,066	-	-
2008	228,663	163,013	8,906	11,042	3,498	6,378	5,652	23,364	6,811	-	-
2009	223,877	157,123	9,055	11,268	3,499	6,485	5,480	24,419	6,547	5,077	1,470
2010	223,370	155,419	9,369	11,484	3,588	6,514	5,684	24,784	6,528	4,878	1,650
2011	n/a	n / a	n/a	n/a							
2012	209,034	143,160	10,304	11,793	3,292	6,763	5,006	26,715	-	4,631	2,001
2013	199,927	137,655	9,619	11,637	3,137	6,628	4,278	24,918	-	4,157	2,056
2014	204,408	139,182	9,777	12,362	3,154	6,812	4,699	26,191	-	4,204	2,231
2015	210,030	141,141	9,712	13,440	3,286	7,220	4,941	27,922	-	3,942	2,369
Forecast											
2016	203,425	137,080	9,420	12,635	3,340	7,200	4,570	26,590	-	-	2,590
2017	203,300	136,095	9,310	12,870	3,435	7,410	4,560	26,850	-	-	2,770
2018	203,200	135,150	9,235	13,125	3,525	7,615	4,550	27,055	-	-	2,945
2019	203,185	134,220	9,195	13,395	3,610	7,820	4,545	27,270	-	-	3,130
2020	203,195	133,295	9,190	13,680	3,690	8,020	4,525	27,485	-	-	3,310
2021	203,225	132,345	9,215	13,975	3,770	8,215	4,525	27,690	-	-	3,490
2022	203,340	131,405	9,270	14,285	3,850	8,410	4,520	27,925	-	-	3,675
2023	203,365	130,440	9,350	14,610	3,930	8,605	4,510	28,060	-	-	3,860
2024	203,555	129,470	9,465	14,965	4,010	8,795	4,500	28,310	-	-	4,040
2025	203,745	128,505	9,600	15,340	4,090	8,990	4,490	28,500	-	-	4,230
Average Annual Growth											
2016-25	-0.3\%	-0.9\%	-0.1\%	1.3\%	2.2\%	2.2\%	-1.0\%	0.2\%	-	-	6.0\%
anges to sur	hodology by year									Source: FAA S	y and Fore

Key changes to survey methodology by year:
2009: The FAA began publishing data for Special Light-Sport Aircraft separately.
2004: The survey coverage was expanded for turbine airplanes and rotorcraft,
accounting for part of the increase in hours.
2011: Data is unavailable at the time of publication.
2007: The estimate of Light-Sport Aircraft increased significantly due to
2012: The general aviation survey results includes "Experimental Light-Sport"
mandatory registration.

The Federal Aviation Administration's (FAA) annual general aviation survey categorizes the uses of general aviation aircraft as follows:

- personal (and recreational) flying;
- business transportation without a paid crew (that is, an individual using an aircraft for business without a paid, professional crew); and
- business transportation with a paid, professional crew (previously called "corporate").

In addition, the following forms of business operations are included in general aviation operations:

- instructional flying (operations under the supervision of a flight instructor including solo flight);
- sight-seeing (commercial sight-seeing operations under FAR Part 91); and
- on-demand FAR Part 135 operations including air taxi (that is, charter), air tours, and airmedical operations.
2.5 U.S. General Aviation and On-Demand Part 135 Estimated Hours Flown (in Thousands) by Type (1980-2015) and Forecast (2016-2025)

		Airplane			Rotorcraft		Balloons, Dirigibles, Cliders	Experimental	Light-Sport Aircraft		
Year	Total Hours	Piston	Turboprop	Business Jet	Piston	Turbine			Total	Experimental	Special
1980	41,016	34,747	2,240	1,332	736	1,603	359	-	-	-	-
1981	40,704	34,086	2,155	1,387	930	1,754	391	-	-	-	-
1982	36,457	29,950	2,168	1,611	579	1,771	379	-	-	-	-
1983	35,249	28,911	2,173	1,473	572	1,700	420	-	-	-	-
1984	36,119	29,194	2,506	1,566	592	1,903	358	-	-	-	-
1985	31,456	25,666	1,921	1,498	521	1,468	382	-	-	-	-
1986	31,782	24,805	2,661	1,527	742	1,682	364	-	-	-	-
1987	30,883	24,969	2,010	1,411	602	1,506	384	-	-	-	-
1988	31,114	24,291	2,195	1,554	533	1,974	568	-	-	-	-
1989	32,332	24,907	2,892	1,527	692	1,918	396	-	-	-	-
1990	32,096	25,832	2,319	1,396	716	1,493	341	-	-	-	-
1991	29,862	23,919	1,628	1,071	549	2,214	483	-	-	-	-
1992	26,747	21,417	1,582	1,076	423	1,842	407	-	-	-	-
1993	24,455	19,321	1,192	1,212	391	1,308	338	785	-	-	-
1994	24,092	18,823	1,142	1,238	369	1,408	388	724	-	-	-
1995	26,612	20,251	1,490	1,455	337	1,624	261	1,194	-	-	-
1996	26,909	20,091	1,768	1,543	591	1,531	227	1,158	-	-	-
1997	27,713	20,744	1,655	1,713	344	1,740	192	1,327	-	-	-
1998	28,100	20,402	1,765	2,226	430	1,912	295	1,071	-	-	-
1999	31,231	22,529	1,797	2,721	552	2,077	309	1,246	-	-	-
2000	29,960	21,493	1,986	2,648	530	1,661	362	1,280	-	-	-
2001	27,017	19,194	1,773	2,654	474	1,479	287	1,157	-	-	-
2002	27,040	18,891	1,850	2,745	454	1,422	333	1,345	-	-	-
2003	27,329	19,013	1,922	2,704	448	1,687	263	1,292	-	-	-
2004	28,126	18,142	2,161	3,718	514	2,020	249	1,322	-	-	-
2005	26,982	16,434	2,106	3,771	617	2,439	267	1,339	9	-	-
2006	27,705	16,525	2,162	4,077	918	2,528	211	1,218	66	-	-
2007	27,852	16,257	2,661	3,938	704	2,541	215	1,275	260	-	-
2008	26,009	15,074	2,457	3,600	751	2,470	209	1,155	293	-	-
2009	23,763	13,634	2,215	3,161	755	2,248	178	1,286	286	171	115
2010	24,802	13,979	2,325	3,375	794	2,611	181	1,226	311	173	138
2011	n/a	n/a	n/a	n / a	n/a						
2012	24,403	13,206	2,733	3,418	731	2,723	180	1,243	-	151	169
2013	22,876	12,352	2,587	3,488	636	2,312	135	1,191	-	135	173
2014	23,271	11,967	2,613	3,881	818	2,424	159	1,244	-	142	165
2015	24,142	12,825	2,538	3,837	798	2,496	162	1,295	-	132	191
Forecast											
2016	23,300	11,767	2,564	4,016	739	2,585	152	1,283	-	-	194
2017	23,490	11,681	2,556	4,164	737	2,680	152	1,311	-	-	208
2018	23,714	11,603	2,554	4,315	756	2,775	152	1,337	-	-	223
2019	23,956	11,532	2,561	4,464	774	2,871	152	1,364	-	-	238
2020	24,201	11,451	2,570	4,619	799	2,967	152	1,391	-	-	253
2021	24,461	11,377	2,589	4,771	824	3,061	152	1,418	-	-	268
2022	24,708	11,295	2,611	4,921	849	3,150	151	1,448	-	-	284
2023	24,960	11,217	2,639	5,068	873	3,239	151	1,473	-	-	299
2024	25,223	11,141	2,671	5,227	896	3,317	151	1,505	-	-	315
2025	25,513	11,086	2,710	5,389	918	3,396	151	1,533	-	-	331
Average Annual Growth											
2016-25	0.6\%	-1.4\%	0.7\%	3.5\%	1.4\%	3.1\%	-0.7\%	1.7\%	\cdot	\cdot	5.7\%

Key changes to survey methodology by year:
2003: Aircraft operating in commuter operations were excluded

- 2004: The survey coverage was expanded for turbine airplanes and rotorcraft,
accounting for part of the increase in hours.
2007: The estimate of Light-Sport Aircraft increased significantly due to
2009: The FAA began publishing data for Special Light-Sport Aircraft separately.
2011: Data is unavailable at the time of publication.
2012: The general aviation survey results includes "Experimental Light-Sport"
data in the "Experimental" category.
mandatory registration.

2.6 Active General Aviation and On-Demand FAR Part 135 Aircraft and Hours Flown (in Thousands) by U.S. State or Territory (2008-2015)

State or
Territory

Alabama
Alaska

Arkansas
California
Colorado

Colorado
Connecticut

Delaware	
D.C.	

D.C.
Florida
Georgia

Hawaii
Idaho

Illinois
Indiana
lowa

Kansas

Kentucky
Louisiana

Maine
Maryland
Massachusetts

Massachusetts
Michigan
Minnesota

Minnesota
Mississippi
Missouri

Missouri
Montana

Nebraska
Nevada
New Hampshire

$\stackrel{3}{2}{ }_{2}^{\frac{0}{2}}$

New
New
North
North
Ohio
Oklah
Orego
Penns

Pen

Rhode Island
South Carolina

South Dakota
Tennessee

Texas Utah

Vermont	628	35
Virginia	5,605	691

Wirginia	
Washington	
West Virginia	

| Wisconsin |
| :--- | :--- |
| Wyoming |

Otr. US Territories
Grand Total 228,6

Ative

Active	$\begin{array}{c}\text { Hours } \\ \text { Flown }\end{array}$	$\begin{array}{c}\text { Active } \\ \text { Aircraft }\end{array}$	$\begin{array}{c}\text { Hours } \\ \text { Flown }\end{array}$	$\begin{array}{c}\text { Active } \\ \text { Aircraft }\end{array}$	$\begin{array}{c}\text { Hours } \\ \text { Flown }\end{array}$

3,549	546	3,145	299	5,095	643				
6,076	701	6,017	688	6,113	681		Aircraft	$\begin{array}{c}\text { Hours } \\ \text { Flown }\end{array}$	$\begin{array}{c}\text { Active } \\ \text { Aircraft }\end{array}$
:---:	:---:	:---:	\(\begin{gathered}Hours 						

Flown\end{gathered}\)
1,13

1,135
354
-
6,070

763	527
,703	696
, 070	666
, 053	366
316	2,309
,412	772
,657	281
, 885	212
415	

527	2,8
696	5,5
666	5,
366	3,
2,309	20
772	5,38
281	
212	1,350

618

805	5,843	618
148	741	179

1,

$$
\begin{array}{r}
5,228 \\
486
\end{array}
$$

$$
\begin{array}{r|}
\hline 1,958 \\
566
\end{array}
$$

$$
486
$$

Columns may not add up due to rounding procedures.
Beginning in 2007, the survey asked the state in which the aircraft was "primarily flown"
tion is assig state and region may vary from previous years. State of registration is assigned if state primarily flown was not answered or cannot be coded. Data for 2011 is unavailable at the time of publication.
2.7 Active U.S. General Aviation and On-Demand FAR Part 135 Average Hours Flown Per Aircraft by Year (2000-2015)

Year	All Aircraft	Airplane			Rotorcraft		Balloons, Dirigibles, Cliders	Experimental	Light-Sport Aircraft	
		Piston	Turboprop	Business Jet	Piston	Turbine			Total	Special
2000	142	130	353	393	198	398	56	64	-	-
2001	138	128	290	341	254	347	50	59	-	-
2002	128	117	270	329	193	331	53	61	-	-
2003	130	118	250	338	211	383	44	63	-	-
2004	128	110	258	400	222	367	42	58	-	-
2005	120	98	265	384	203	429	41	57	55	-
2006	125	101	268	393	281	429	34	53	52	-
2007	120	97	280	379	254	374	36	55	43	-
2008	114	93	276	326	215	387	37	50	43	-
2009	106	87	245	281	216	347	32	53	44	78
2010	111	90	248	294	221	401	32	50	48	84
2011	n/a	-	n/a							
2012	117	92	265	290	222	403	36	47	-	85
2013	114	90	269	300	203	349	32	48	-	84
2014	114	86	267	314	260	356	34	48	-	74
2015	115	91	261	286	243	346	33	46	-	81

Data for 2011 is unavailable at time of publication. Source: FAA Survey

2.8 U.S. Experimental Aircraft Fleet and Flight Hours (in Thousands) (2000-2015)

Year	Aircraft Fleet						Hours Flown					
	AmateurBuilt	Exhibition	Experimental Light-Sport	Other	Total Experimental	\% of GA Fleet	AmateurBuilt	Exhibition	Experimental Light-Sport	Other	Total Experimental	\% of GA Hours
2000	16,739	1,973	-	1,694	20,406	9.4\%	887	113	-	279	1,279	4.3\%
2001	16,736	2,052	-	1,633	20,421	9.7\%	794	102	-	261	1,157	4.3\%
2002	18,168	2,190	-	1,578	21,936	10.4\%	976	127	-	242	1,345	5.0\%
2003	17,028	2,031	-	1,491	20,550	9.8\%	963	103	-	226	1,292	4.7\%
2004	19,165	2,070	-	1,565	22,800	10.4\%	990	116	-	216	1,322	4.7\%
2005	19,817	2,120	-	1,691	23,628	10.5\%	987	113	-	239	1,339	5.0\%
2006	19,316	2,103	-	1,629	23,048	10.4\%	899	103	-	216	1,218	4.4\%
2007	19,538	2,101	-	1,589	23,228	10.0\%	896	102	-	277	1,274	4.6\%
2008	19,767	2,096	-	1,501	23,364	10.2\%	872	92	-	192	1,155	4.4\%
2009	20,794	2,063	5,077	1,562	29,496	13.2\%	983	88	171	215	1,457	6.1\%
2010	21,270	2,029	4,878	1,485	29,662	13.3\%	911	98	173	217	1,399	5.6\%
2011	n/a											
2012	18,843	1,923	4,631	1,317	26,715	12.8\%	847	88	151	157	1,243	5.1\%
2013	17,503	1,908	4,157	1,350	24,918	12.5\%	785	78	135	193	1,191	5.2\%
2014	18,873	1,893	4,204	1,221	26,191	12.8\%	834	79	142	189	1,244	5.3\%
2015	21,195	1,966	3,942	820	27,922	13.3\%	1,000	76	132	87	1,295	5.4\%

Beginning in 1994, experimental includes aircraft with an experimental airworthiness certificate. These include research and development, amateur-built, exhibition,
racing, crew training, and market survey aircraft and aircraft used to show compliance with the Federal Aviation Regulations.

2.9 Total Fuel Consumed and Average Fuel Consumption Rate by Aircraft Type (2015)

Fuel Type	Fixed-Wing			Rotorcraft		Other Aircraft	Experimental	Special Light-Sport	Total All Aircraft
	Piston	Turboprop	Turbojet	Piston	Turbine				
Jet Fuel Avg. Rate (GPH) Estimated Fuel Use (Thousand Gal.) \% Standard Error	$\begin{array}{r} 36.6 \\ 2,160.9 \\ 19.7 \end{array}$	$\begin{array}{r} 75.7 \\ 190,753.8 \\ 1.2 \end{array}$	$\begin{array}{r} 277.2 \\ 1,062,001.2 \\ 1.0 \end{array}$	- - -	$\begin{array}{r} 51.4 \\ 128,170.0 \\ 1.3 \end{array}$	- - -	$\begin{array}{r} 41.8 \\ 1,226.5 \\ 19.0 \end{array}$		$\begin{array}{r} 154.9 \\ 1,384,412.4 \\ 0.9 \end{array}$
100 Low-Lead Avg. Rate (GPH) Estimated Fuel Use (Thousand Gal.) \% Standard Error	$\begin{array}{r} 13.0 \\ 154,169.8 \\ 1.8 \end{array}$	$\begin{array}{r} 29.6 \\ 515.8 \\ 12.4 \end{array}$	- - -	$\begin{array}{r} 12.8 \\ 10,004.7 \\ 3.0 \end{array}$	33.9	$\begin{array}{r} 4.7 \\ 9,535.1 \\ 21.7 \end{array}$	$\begin{array}{r} 10.8 \\ 413.9 \\ 3.7 \end{array}$	$\begin{array}{r} 6.0 \\ 413.9 \\ 4.8 \end{array}$	$\begin{array}{r} 12.8 \\ 174,933.6 \\ 1.6 \end{array}$
100 Octane Avg. Rate (GPH) Estimated Fuel Use (Thousand Gal.) \% Standard Error	$\begin{array}{r} 15.0 \\ 7,909.2 \\ 10.1 \end{array}$	-	- - -	$\begin{aligned} & 10.9 \\ & 71.7 \\ & 25.2 \end{aligned}$			$\begin{array}{r} 10.0 \\ 266.2 \\ 9.0 \end{array}$	$\begin{array}{r} 5.6 \\ 12.6 \\ 15.4 \end{array}$	$\begin{array}{r} 15.8 \\ 8,923.9 \\ 15.2 \end{array}$
Automotive Gasoline Avg. Rate (GPH) Estimated Fuel Use (Thousand Gal.) \% Standard Error	$\begin{array}{r} 8.2 \\ 2,896.7 \\ 8.1 \end{array}$	- - -		-		$\begin{array}{r} 4.3 \\ 13.8 \\ 17.5 \end{array}$	$\begin{array}{r} 5.0 \\ 1,541.7 \\ 3.3 \end{array}$	$\begin{array}{r} 6.4 \\ 765.9 \\ 5.9 \end{array}$	$\begin{array}{r} 6.7 \\ 5,229.4 \\ 3.7 \end{array}$
Other Fuel Avg. Rate (GPH) Estimated Fuel Use (Thousand Gal.) \% Standard Error	$\begin{array}{r} 12.1 \\ 269.5 \\ 19.8 \end{array}$	$\begin{gathered} 81.7 \\ 115.0 \\ 37.6 \end{gathered}$	- - -	-		$\begin{array}{r} 18.0 \\ 1,478.3 \\ 8.1 \end{array}$	$\begin{aligned} & 12.2 \\ & 35.8 \\ & 25.3 \end{aligned}$		$\begin{array}{r} 18.0 \\ 1,902.2 \\ 9.0 \end{array}$
Total Fuel Use Avg. Rate (GPH) Estimated Fuel Use (Thousand Gal.) \% Standard Error	$\begin{array}{r} 13.1 \\ 167,406.1 \\ 1.8 \end{array}$	$\begin{array}{r} 75.4 \\ 191,394.0 \\ 1.2 \end{array}$	$\begin{array}{r} 277.0 \\ 1,062,904.5 \\ 1.0 \end{array}$	$\begin{array}{r} 12.8 \\ 10,181.2 \\ 3.0 \end{array}$	$\begin{array}{r} 51.4 \\ 128,185.1 \end{array}$ 1.3	$\begin{array}{r} 17.1 \\ 1,527.2 \\ 7.8 \end{array}$	$\begin{array}{r} 10.1 \\ 12,605.3 \\ 3.9 \end{array}$	$\begin{array}{r} 6.3 \\ 1,198.2 \\ 4.2 \end{array}$	$\begin{array}{r} 65.6 \\ 1,575,401.4 \\ 1.9 \end{array}$
Some data points are suppressed or contain no reports of a type of aircraft using that fuel. Source: FAA Surver									

2.10 U.S. Refinery and Blender Net Production of Aviation Gasoline (1990-2015) (in Thousand Barrels Per Day)

Year	Year 0	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8	Year 9
1990	23	22	22	21	22	21	20	20	20	20
2000	18	18	17	16	17	17	18	16	15	14
2010	15	15	13	12	12	11	-	-	-	-

Source: U.S. Energy Information Administration

FIGURE 2.1 Refinery and Blender Net Production of Aviation Gasoline (1990-2015)

2.11 U.S. General Aviation Fuel Consumption (2000-2015)

2.12 Average Age of Registered U.S. General Aviation Fleet (2007-2015)

Aircraft Type	Engine Type	Seats	Average Age in 2007 in Years	Average Age in 2008 in Years	Average Age in 2009 in Years	Average Age in 2010 in Years	Average Age in 2011 in Years	Average Age in 2012 in Years	Average Age in 2013 in Years	Average Age in 2014 in Years	Average Age in 2015 in Years
Single-Engine	Piston	1-3	38	48.1	-	-	-	-	-	-	-
		4	36	38.2	-	-	-	-	-	-	-
		5-7	32	33.5	-	-	-	-	-	-	-
		$8+$	43	49.3	-	-	-	-	-	-	-
		All	-	-	42.2	46.3	n/a	43.4	40.7	44.8	45.4
	Turboprop	All	14	13.6	16.1	15.2	n/a	14.9	12.5	13.5	13.2
	Jet	All	35	44.4	44.0	44.1	n/a	n/a	n/a	n/a	n/a
	Helicopter - Piston	All	-	-	-	n/a	n/a	20.8	17.1	21.4	21.5
	Helicopter - Turbine	All	-	-	-	n/a	n/a	22.9	22.3	22.1	22.4
Multi-Engine	Piston	1-3	33	48.9	-	-	-	-	-	-	-
		4	35	36.0	-	-	-	-	-	-	-
		5-7	39	39.3	-	-	-	-	-	-	-
		$8+$	40	41.6	-	-	-	-	-	-	-
	All	All	-	-	41.2	39.0	n/a	40.2	38.5	41.9	42.5
	Turboprop	All	27	28.8	28.0	27.0	n/a	26.1	25.2	27.6	27.2
	Jet	All	16	16.2	17.0	16.2	n/a	15.3	14.7	15.8	15.8
	Helicopter - Turbine	All	-	-	-	-	-	17.5	14.7	17.6	18.1
All Aircraft			35	39.3	39.5	37.3	n/a	35.1	33.2	36.7	36.9

Source: GAMA

2.13 U.S. General Aviation Operations (in Thousands) at FAA and Contract Towers (1992-2016)

2.14 Summary of U.S. General Aviation Operations and Contacts (in Thousands) at FAA Facilities (2000-2016)

	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015E	2016 F
GA IFR Aircraft Handled at FAA Air Route Traffic Control Centers	8,744.4	8,024.0	8,180.7	7,999.8	8,350.4	8,367.7	8,197.0	8,294.3	7,670.7	6,331.6	6,550.3	6,557.3	6,472.1	6,439.1	6,741.0	7,007.0	7,061.0
GA Instrument Operations at FAA \& Contract Facilities	21,221.7	19,705.5	19,655.8	18,629.8	18,619.5	17,985.9	-	-	-	-	-	-	-	-	-	-	-
GA Total TRACON Operations	20,799.2	19,274.9	19,212.5	18,094.2	18,006.8	17,388.9	17,005.3	16,747.4	15,763.0	14,151.1	13,863.6	13,503.1	13,423.6	13,047.7	13,017.6	13,079.0	13,040.0
Total Aircraft Contacts at FSS	2,438.0	2,196.0	2,170.0	2,050.0	1,976.0	-	-	-	-	-	-	-	-	-	-	-	-

$\mathrm{E}=$ Estimated. $\mathrm{F}=$ Forecast.
Facilities include Control Towers, TRACONs, CERAPs, and RAPCONs.
Traffic Count for GA Operation Data provided by ATADS.
FAA suspended tracking of IFR operations at Contract Facilities in 2005

GA Total TRACON Operations were titled "GA Instrument Operations at Airports with FAA Traffic Control Facilities" in previous publications. FAA suspended tracking of Flight Service Station (FSS) contacts in 2004.

FIGURE 2.2 Worldwide Turbine Business Airplane Fleet (2000-2016)

FIGURE 2.3 Worldwide Turbine and Piston Helicopter Fleet (2007-2016)

FIGURE 2.4 Worldwide Business Aircraft Operators (2000-2016)

FIGURE 2.5 Fractional Aircraft and Share Owners (2000-2016)

European Fleet Data

3.1 Austria—Number of Aircraft by Type (2011-2016)

Year	Aircraft Type									Total Aircraft
	Fixed-wing Aeroplanes				Rotorcraft			Federal Aircraft	Remote Piloted Aircraft	
	1,999 kg and Below	2,000 kg-5,700 kg	Above 5,700 kg	Motor Gliders	Single-Engine	Multi-Engine	Gyroplanes			
2011	723	110	323	186	99	57	5	17	-	1,520
2012	706	102	331	184	95	51	5	17	-	1,491
2013	712	97	326	181	96	52	8	17	-	1,489
2014	710	90	308	179	97	53	8	17	-	1,462
2015	710	95	292	176	100	54	7	17	-	1,451
2016	696	96	303	174	104	64	7	18	2	1,464
							urce: Austrocont	Österreichisch	tfahrzeugreg	www.austrocontrol

3.2 Belgium—Number of Aircraft by Type (2014-2016)

Year	Aircraft Type									Total Aircraft
	Fixed-wing Aeroplanes	Rotorcraft	Balloons and Airships	Homebuilt	Microlights	Ultralights	Gliders and Sailplanes	Powered Parachutes	Remote Piloted Aircraft	
2014	999	203	510	56	265	-	408	-	-	2,441
2015	-	-	-	-	-	-	-	-	-	\cdot
2016	814	194	504	-	163	406	410	879	679	4,049

Source: Belgian Civil Aviation Authority (SPF Mobilité et Transport), www.mobilit.belgium.be

3.3 Bulgaria-Number of Aircraft by Type (2015)

Year	Aircraft Type							Total Aircraft
	Fixed-wing Aeroplanes	Rotorcraft	Ultralights	Balloons	Gliders	Motor Gliders	Autogyros	
2015	561	126	69	99	355	112	18	1,340

3.4 Croatia—Number of Aircraft by Type (2015-2016)

Year	Aircraft Type									Total Aircraft
	Fixed-wing Aeroplanes		Rotorcraft	Ultralights and Microlights	Balloons	Amphibian	Gliders and Motor Gliders	Amateur-Built	Gyrocopters	
	$\begin{aligned} & 5,700 \mathrm{~kg} \\ & \text { and Below } \end{aligned}$	$\begin{gathered} \text { Above } \\ 5,700 \mathrm{~kg} \end{gathered}$								
2015	153	1	16	112	20	2	60	12	2	378
2016	157	3	19	114	19	2	69	-	3	386

[^1]
3.5 Cyprus—Number of Aircraft by Type (2014-2016)

Year	Aircraft Type										Total Aircraft
	Fixed-wing Aeroplanes			Rotorcraft	Microlights	Gliders	Amphibian	Seaplanes	Powered Parachute	Remote Piloted Aircraft	
	5,700 kg and Below		Above 5,700 kg								
	Single-Engine	Multi-Engine									
2014	47	9	1	2	18	1	1	1	1	0	81
2015	53	12	1	13	20	1	1	1	1	1	104
2016	53	13	1	13	21	0	0	0	0	1	102

3.6 Czech Republic—Number of Aircraft by Type (2008-2016)

Year	Aircraft Type										Total Aircraft
	Fixed-wing Aeroplanes			Rotorcraft	Motor Gliders	Gliders	Balloons	Airships	Microlights	Remote Piloted Aircraft	
	5,700 kg and Below		Above 5,700 kg								
	Single- Engine	Multi- Engine									
2008	788		102	70	89	702	156	2	3,911	-	8,943
2009	870		96	82	95	725	165	2	4,171	-	9,507
2010	867		94	106	101	762	181	2	4,434	-	10,114
2011	915		84	118	101	838	191	2	4,745	-	10,824
2012	943		104	127	106	908	204	2	4,957	-	11,365
2013	940		86	134	109	956	209	2	5,199	-	11,894
2014	977		91	142	115	976	218	2	5,416	-	12,376
2015	964		85	153	130	987	233	2	5,649	-	12,888
2016	918	101	89	161	133	1,013	243	2	5,843	620	13,947

Drones having Unmanned Aircraft Special Authorisation issued by the Civil Aviation Authority of the Czech Republic
Source: Czech Civil Aviation Authority (Urad Pro Civilni Letectvi), http://www.caa.cz/
and Light Aircraft Association of the Czech Republic, http://www.laacr.cz/

3.7 Denmark—Number of Aircraft by Type (2012-2016)

Year	Aircraft Type								Total Aircraft
	Fixed-wing Aeroplanes				Rotorcraft	Balloons	Motor Gliders	Gliders	
	2,730 kg and Below	$\begin{aligned} & 2,730 \mathrm{~kg}- \\ & 5,700 \mathrm{~kg} \end{aligned}$	$\begin{aligned} & 5,700 \mathrm{~kg}- \\ & 50,000 \mathrm{~kg} \end{aligned}$	$\begin{aligned} & 50,000 \mathrm{~kg}- \\ & 100,000 \mathrm{~kg} \end{aligned}$					
2012	684	43	127	48	125	66	136	330	1,559
2013	673	40	121	58	129	66	134	324	1,545
2014	670	36	135	61	124	70	136	314	1,546
2015	658	38	135	56	118	71	138	305	1,519
2016	646	39	129	53	114	73	135	304	1,493

3.8 Estonia—Number of Aircraft by Type (2014-2016)

Year	Aircraft Type							Total Aircraft
	Fixed-wing Aeroplanes		Rotorcraft		Gyroplanes	Balloons	Gliders and Motor Gliders	
	5,700 kg and Below	Above 5,700 kg	Single-Engine	Multi-Engine				
2014	71	26	8	3	2	8	39	157
2015	67	27	9	3	2	8	43	159
2016	62	35	10	3	2	8	42	162

3.9 Finland-Number of Aircraft by Type (2008-2016)

Year	Aircraft Type						Total Aircraft
	Fixed-wing Aeroplanes		Rotorcraft and Gyrocopters	Gliders and Motor Gliders	Lighter-Than-Air	Microlights	
	Aeroplanes	Airliners Below					
2008	540	88	79	402	62	239	1,410
2009	555	91	84	404	64	274	1,472
2010	562	99	90	406	68	292	1,517
2011	573	94	95	403	64	315	1,544
2012	581	101	104	400	58	318	1,562
2013	575	87	111	396	56	320	1,545
2014	552	109	111	390	54	318	1,534
2015	567	110	105	366	52	318	1,518
2016	578	84	99	359	52	324	1,496

TRAFI use the term airliner. Since 2014, airliners are defined as aeroplanes with a maximum take-off weight (MTOW) of more than 8618 kg .
Source: Finnish Transport Safety Agency (Liikenteen turvallisuusvirasto), www.trafi.fi

3.10 France—Number of Aircraft by Type (2008-2015)

Year	Activity at Aeroclubs														Total Aircraft
	Fixed-wing Aeroplanes			Gliders			Rotorcraft			Hang Gliders		Ultralights			
	Number of Aircraft	Hours Flown	Active Pilots	Number of Aircraft	Hours Flown	Active Pilots	Number of Aircraft	Hours Flown	Active Pilots	Number of Vehicles	Number of Pilots	Number of Aircraft	Hours Flown	Active Pilots	
2008	2,057	568,704	41,266	1,853	228,000	9,951	34	4,120	249	18,900	18,354	8,214	378,032	13,108	31,024
2009	2,029	582,054	40,187	1,958	255,576	9,633	n/a	n/a	223	19,200	19,371	8,534	386,084	13,398	31,721
2010	1,980	558,730	40,113	2,353	247,381	9,668	17	3,320	193	19,700	19,949	8,713	376,477	13,534	32,746
2011	1,862	583,074	40,898	1,972	231,628	9,638	18	4,915	198	20,100	20,674	8,476	402,712	14,194	32,410
2012	2,252	554,401	40,680	1,984	207,130	9,350	28	7,524	215	20,500	22,345	8,643	481,456	14,221	33,407
2013	2,302	550,319	40,643	1,924	204,371	10,397	42	9,223	226	20,900	21,841	9,571	483,867	14,517	34,739
2014	2,420	559,069	41,512	1,957	205,982	11,115	67	10,200	260	21,200	21,229	9,261	487,965	15,104	34,905
2015	2,440	553,851	41,253	1,951	214,552	11,341	83	11,250	280	21,300	22,345	8,815	520,650	15,453	34,506

Active pilots includes student pilots.
Source: French DGAC (Observatoire de l'Aviation civile), http://www.developpement-durable.gouv.fr
Gliders include motor gliders, towed gliders, and gliders launched by winch.

3.11 Germany—Number of Aircraft by Type (2008-2016)

Year	Aircraft Type												Total Aircraft
	Fixed-wing Aeroplanes							Rotorcraft	Motor Gliders	Airships	Balloons	Gliders	
	Single-Engine		Multi-Engine		$\begin{aligned} & 5,701 \mathrm{~kg}- \\ & 14,000 \mathrm{~kg} \end{aligned}$	$\begin{aligned} & 14,001 \mathrm{~kg}- \\ & 20,000 \mathrm{~kg} \end{aligned}$	Above $20,000 \mathrm{~kg}$						
	$\begin{aligned} & \text { 2,000 kg } \\ & \text { and Below } \end{aligned}$	$\begin{gathered} 2,000 \mathrm{~kg}- \\ 5,700 \mathrm{~kg} \end{gathered}$	$\begin{aligned} & \text { 2,000 kg } \\ & \text { and Below } \end{aligned}$	$\begin{gathered} 2,000 \mathrm{~kg}- \\ 5,700 \mathrm{~kg} \end{gathered}$									
2008	6,738	126	232	436	224	45	734	739	2,948	4	1,286	7,815	21,327
2009	6,752	144	241	445	231	43	757	780	3,022	3	1,261	7,891	21,570
2010	6,801	153	242	444	228	40	772	811	3,081	4	1,260	7,867	21,703
2011	6,744	155	243	428	236	38	770	773	3,122	3	1,257	7,834	21,603
2012	6,757	150	239	414	217	30	767	774	3,185	5	1,215	7,793	21,546
2013	6,733	155	240	403	199	34	758	769	3,263	3	1,201	7,704	21,462
2014	6,689	149	228	393	207	33	751	745	3,357	3	1,183	7,657	21,395
2015	6,596	147	229	371	191	34	751	757	3,403	3	1,164	7,567	21,213
2016	6,553	160	221	381	211	35	777	733	3,456	3	1,124	7,450	21,104

Source: German Civil Aviation Authority (Luftfahrt-Bundesamtes / Statistiken), www.lba.de

3.12 Iceland-Number of Aircraft by Type (2015-2016)

Year	Aircraft Type						Total Aircraft
	Fixed-wing Aeroplanes		Rotorcraft		Amphibian	Gliders	
	5,700 kg and Below	Above 5,700 kg	Single-Engine	Multi-Engine			
2015	242	1	7	3	2	28	283
2016	247	3	9	3	2	28	292

3.13 Ireland—Number of Aircraft by Type (2012-2016)

Year	Aircraft Type															Total Aircraft
	Fixed-wing Aeroplanes						Rotorcraft		Microlights	Balloons	Homebuilt	Gyrocopters	Motor Gliders	Amphibian	Gliders	
	Single-Engine		Multi-Engine													
	$\begin{gathered} \text { 2,000 kg } \\ \text { and Below } \end{gathered}$	$\begin{aligned} & 2,000 \mathrm{~kg}- \\ & 5,700 \mathrm{~kg} \end{aligned}$	$\begin{aligned} & \text { 2,000 kg } \\ & \text { and Below } \end{aligned}$	$\begin{aligned} & 2,000 \mathrm{~kg}- \\ & 5,700 \mathrm{~kg} \end{aligned}$	$\begin{aligned} & 5,701 \mathrm{~kg}- \\ & 15,000 \mathrm{~kg} \end{aligned}$	Above $15,000 \mathrm{~kg}$	Engine	Engine								
2012	181	5	7	6	5	14	31	16	128	10	39	11	3	1	n/a	457
2013	180	5	8	6	3	17	30	19	133	10	45	13	4	1	21	495
2014	179	3	6	8	1	8	25	14	132	10	56	14	5	1	20	482
2015	178	3	6	8	1	6	21	13	141	10	59	13	6	1	18	484
2016	180	2	5	9	1	8	22	15	146	10	60	15	5	1	18	497

Source: Irish Aviation Authority Data, www.iaa.ie and GAMA Analysis

3.14 Isle of Man—Number of Aircraft by Type (2014-2016)

Year	Aircraft Type					Total Aircraft
	Fixed-wing Aeroplanes			Rotorcraft		
	5,700 kg and Below	5,700 kg-15,000 kg	Above 15,000 kg	Single-Engine	Multi-Engine	
2014	76	65	230	2	28	401
2015	71	68	244	2	26	411
2016	67	61	280	0	43	451

Source: Isle of Man Aircraft Registery, www.gov.im

3.15 Italy—Number of Aircraft by Type (2015-2016)

Year	Aircraft Type									Total Aircraft
	Fixed-wing Aeroplanes			Rotorcraft		Gliders and Motor Gliders	Balloons	Airships	Ultralights	
	$451 \mathrm{~kg}-2,000 \mathrm{~kg}$	2,001 kg-5,700 kg	Above 5,700 kg	Single-Engine	Multi-Engine					
2015	706	67	83	335	157	143	57	0	12,392	13,940
2016	776	69	83	331	173	148	67	2	12,719	14,368

3.16 Latvia—Number of Aircraft by Type (2014-2016)

Year	Aircraft Type														Total Aircraft
	Fixed-wing Aeroplanes								Rotorcraft			Motor Gliders	Gliders	Gyrocopters	
	5,700 kg and Below						Above 5,700 kg		Piston	Turbine					
	Piston		Turboprop		Turbojet		Turboprop	Turbojet		SingleEngine	MultiEngine				
	Single- Engine	MultiEngine	SingleEngine	MultiEngine	Single- Engine	Multi- Engine									
2014	122	6	2	2	8	2	1	3	10	5	12	25	21	2	221
2015	130	6	10	1	2	2	0	1	9	4	12	10	21	2	210
2016	126	6	7	1	2	3	1	3	6	5	10	10	22	2	204

Source: Latvian CAA (Civilās Aviäcijas Aǵentüra), www.caa.Iv
3.17 Lithuania—Number of Aircraft by Type (2014-2016)

Year	Aircraft Type												Total Aircraft
	Fixed-wing Aeroplanes		Rotorcraft		Ultralights	Microlights	Balloons and Airships	Gliders	Motor Gliders	Amphibian	Gyrocopters	AmateurBuilt	
	$\begin{aligned} & \text { 5,700 kg } \\ & \text { and Below } \end{aligned}$	Above $5,700 \mathrm{~kg}$	Single- Engine	MultiEngine									
2014	266		29		122	54	110	194	12	1	0	0	788
2015	265		24		125	56	112	157	11	1	0	0	751
2016	239	10	12	4	77	49	114	130	12	1	3	30	681

Source: Lithuanian CAA (Civilines Aviacijos Administracija), www.caa.lt

3.18 Luxembourg—Number of Aircraft by Type (2014-2016)

Year	Aircraft Type								Total Aircraft
	Fixed-wing Aeroplanes		Rotorcraft		Ultralights	Gliders	Balloons	Experimental	
	5,700 kg and Below	Above 5,700 kg	Single-Engine	Multi-Engine					
2014	183		11		21	11	54	12	292
2015	191		54		14	10	12	12	293
2016	89	96	2	10	13	7	56	11	284

[^2]3.19 Malta—Number of Aircraft by Type (2014-2016)

Year	Aircraft Type					Total Aircraft
	Fixed-wing Aeroplanes			Rotorcraft	Microlights	
	5,700 kg and Below	5,701 kg-12,000 kg	Above $12,000 \mathrm{~kg}$			
2014	38	11	60	4	33	146
2015	35	13	97	4	32	181
2016	36	13	120	4	30	203

3.20 Montenegro—Number of Aircraft by Type (2014-2016)

Year	Aircraft Type						Total Aircraft
	Fixed-wing Aeroplanes		Rotorcraft	Balloons	Gliders	Amphibian	
	5,700 kg and Below	Above 5,700 kg					
2014	19	2	7	1	2	0	31
2015	9	4	4	0	1	1	19
2016	10	5	5	1	2	1	24

3.21 Netherlands—Number of Aircraft by Type (2008-2016)

Year	Aircraft Type																	Total Aircraft
	Fixed-wing Aeroplanes						Rotorcraft			Gliders	Motor Gliders	Homebuilt	Balloons	Amphibian	Microlights	Ultralights	Remote Piloted Aircraft	
	2,000 kg and Below		2,000 kg-5,700 kg		Large Aeroplanes		SingleEngine	MultiEngine	Gyrocopters									
	SingleEngine	Multi- Engine	SingleEngine	Multi- Engine	Piston and Turboprop	Turbofan												
2008	567	27	25	35	44	210	56	30	7	554	151	132	461	2	403	n/a	-	2,704
2009	571	30	29	35	42	235	51	38	5	550	153	143	469	2	413	n/a	-	2,766
2010	550	31	29	35	33	233	50	41	5	547	151	149	463	2	438	n/a	-	2,757
2011	545	32	28	30	20	239	49	37	5	533	145	153	462	1	469	n/a	-	2,748
2012	523	30	26	29	22	237	48	37	6	519	151	163	466	1	494	n/a	-	2,752
2013	508	19	23	26	20	236	45	39	6	507	145	175	447	1	507	n/a	-	2,704
2014	482	16	24	25	18	237	38	35	5	493	151	177	432	1	515	n/a	-	2,649
2015	429	24	23	21	17	251	41	34	4	483	151	189	416	1	529	30	-	2,643
	Piston	Turbine	Piston	Turbine	Piston	Turbine	Piston	Turbine	Autogyros	Gliders	Motor Gliders	Homebuilt	Balloons	Amphibian	Microlights	Other	RPA	
2016	634	4	25	16	4	269	23	50	5	492	-	-	427	-	538	24	488	2,999

Turbofan data includes both business jets and aeroplanes used in airline operations.
Source: Dutch Environment and Transport Inspectorate (Inspectie Leefomgeving en Transport), www.ilent.nl

3.22 Norway—Number of Aircraft by Type (2015-2016)

Year	Aircraft Type							Total Aircraft
	Fixed-wing Aeroplanes			Rotorcraft		Gliders and Motor Gliders	Balloons and Airships	
	5,700 kg and Below	Above 5,700 kg	Above $60,000 \mathrm{~kg}$	5,700 kg and Below	Above 5,700 kg			
2015	799			266		149	20	1,234
2016	454	208	131	192	75	151	20	1,231

Source: Norway Civil Aviation Authority, http://www.luftfartstilsynet.no/

3.23 Poland—Number of Aircraft by Type (2014-2016)

Year	Aircraft Type											Total Aircraft
	Fixed-wing Aeroplanes				Rotorcraft		Gliders and Motor Gliders	Balloons	Ultralights	Gyrocopters	Remote Piloted Aircraft	
	Annex II	5,700 kg and Below		$\begin{aligned} & \text { Above } \\ & 5,700 \mathrm{~kg} \end{aligned}$	Single- Engine	Multi- Engine						
		Single- Engine	MultiEngine									
2014	265	1,019	84	116	110	71	837	144	204	21	-	2,871
2015	275	1,034	79	117	104	90	885	196	226	26	-	2,757
2016	263	1,041	82	123	103	99	907	203	239	32	32	2,829

Annex II aircraft are also included in the total count of single-engine aeroplanes.
Source: Polish Civil Aviation Authority (Urzad Lotnictwa Cywilnego), www.ulc.gov.pl

3.24 Portugal—Number of Aircraft by Type (2014-2015)

Year	Aircraft Type										Total Aircraft
	Fixed-wing Aeroplanes				Rotorcraft		Ultralights and Powered Gliders	Gliders	Balloons	Amphibian	
	5,700 kg and Below		$\begin{aligned} & 5,700 \mathrm{~kg}- \\ & 15,000 \mathrm{~kg} \end{aligned}$	$\begin{gathered} \text { Above } \\ 15,000 \mathrm{~kg} \end{gathered}$	SingleEngine	Multi- Engine					
	Single- Engine	MultiEngine									
2014	317	35	80	50	73	28	430	21	47	1	1,082
2015	512		647	284	116	42	590	49	59	15	2,314

The number of single-engine versus multi-engine small aeroplanes is not available. The number shown is the
Source: Portuguese Civil Aviation Authority (Instituto Nacional de Aviação Civil), www.inac.pt combined number of small aeroplanes.

3.25 Romania-Number of Aircraft by Type (2015)

Year	Aircraft Type				Total Aircraft
	Fixed-wing Aeroplanes		Rotorcraft		
	5,700 kg and Below	Above 5,700 kg	Single-Engine	Multi-Engine	
2015	97	5	17	25	144

3.26 Serbia—Number of Aircraft by Type (2014-2016)

Year	Aircraft Type												Total Aircraft
	Fixed-wing Aeroplanes		Rotorcraft		Ultralights	Balloons	Motor Gliders	Gliders	Amphibian	Gyrocopters	Other Aeroplanes	Remote Piloted Aircraft	
	$\begin{gathered} 5,700 \mathrm{~kg} \\ \text { and Below } \end{gathered}$	$\begin{gathered} \text { Above } \\ 5,700 \mathrm{~kg} \end{gathered}$	$\begin{gathered} 3,175 \mathrm{~kg} \\ \text { and Below } \end{gathered}$	Above $3,175 \mathrm{~kg}$									
2014	188	10	4	33	34	7	33	50	1	2	18	-	380
2015	193	11	34	4	36	6	36	51	1	3	19	-	394
2016	207	21	34	4	37	6	40	53	1	3	17	130	553

3.27 Slovakia—Number of Aircraft by Type (2014-2015)

Year	Aircraft Type						Total Aircraft
	Aeroplanes	Rotorcraft	Ultralights	Balloons	Motor Gliders	Gliders	
2014	331	55	9	42	21	231	689
2015	272	68	69	41	n/a	269	719

Source: Transport Authority Slovakia (Dopravný úrad), www.nsat.sk

3.28 Slovenia—Number of Aircraft by Type (2011-2016)

Year	Aircraft Type							Total Aircraft
	Fixed-wing Aeroplanes	Rotorcraft	Ultralights	Balloons	Hang Gliders	Gyrocopters	Gliders	
2011	260	26	123	68	72	0	162	711
2012	246	26	128	78	72	1	174	725
2013	223	23	108	61	72	3	171	661
2014	221	22	112	61	72	3	172	663
2015	202	21	113	58	71	3	170	638
2016	192	22	108	58	71	3	165	619

Source: Civil Aviation Agency, Slovenia (agencija za civilno letalstvo Republike Slovenije), www.caa.si

3.29 Spain—Number of Aircraft by Type (2014-2015)

Year	Aircraft Type												Total Aircraft
	Fixed-wing Aeroplanes					Rotorcraft		AmateurBuilt	Ultralights	Balloons and Airships	Gliders	Powered Gliders	
	5,700 kg and Below		5,700 kg-15,000 kg		Above$15,000 \mathrm{~kg}$	Single- Engine	MultiEngine						
	Single- Engine	MultiEngine	SingleEngine	MultiEngine									
2014	1,581	356	63	98	89	313	238	1,547	1,575	561	225	27	6,673
2015	1,557	350	66	80	92	306	257	1,586	1,582	572	254	36	6,738

[^3]
3.30 Sweden—Number of Aircraft by Type (2008-2015)

Year	Motorpowered Aircraft by Weight							Cliders, Motor Cliders and Balloons	Total Aircraft
	$2,000 \mathrm{~kg}$ and Below	$\begin{gathered} \text { 2,001 kg- } \\ 5,700 \mathrm{~kg} \end{gathered}$	$\begin{aligned} & 5,701 \mathrm{~kg}- \\ & 10,000 \mathrm{~kg} \end{aligned}$	$\begin{aligned} & 10,001 \mathrm{~kg}- \\ & 15,000 \mathrm{~kg} \end{aligned}$	$\begin{aligned} & 15,001 \mathrm{~kg}- \\ & 25,000 \mathrm{~kg} \end{aligned}$	$\begin{aligned} & 25,001 \mathrm{~kg}- \\ & 100,000 \mathrm{~kg} \end{aligned}$	Above $100,000 \mathrm{~kg}$		
2008	2,096	187	46	30	64	54	5	436	2,918
2009	2,115	191	44	27	67	59	5	420	2,928
2010	2,251	189	40	27	72	47	5	274	2,905
2011	2,092	198	37	21	75	45	5	255	2,728
2012	2,093	191	34	22	72	44	3	263	2,722
2013	2,094	186	37	23	84	44	2	321	2,791
2014	2,090	186	31	24	82	45	2	340	2,800
	Aeroplanes	Rotorcraft	Cliders	Motor Cliders	Balloons	Ultralights	Gyrocopters		
2015	1,650	261	330	155	107	475	68	n / a	3,046

The number of gliders, powered gliders, and balloons is based on the number of valid airworthiness certificates on December 31 of the year.
Source: Swedish Transport Ministry (Transportstyrelsen), www.transportstyrelsen.se
Sweden changed how aircraft registry data is published in 2015.
3.31 Switzerland—Number of Aircraft by Type (2010-2015)

Year	Aircraft Type									Total Aircraft
	Fixed-wing Aeroplanes				Rotorcraft	Motor Gliders	Gliders	Free Balloons	Airships	
	$2,250 \mathrm{~kg}$ and Below	$\begin{array}{r} 2,250 \mathrm{~kg}- \\ 5,700 \mathrm{~kg} \end{array}$	Above $5,700 \mathrm{~kg}$	Total Aeroplanes						
2010	1,413	197	303	1,913	327	251	824	381	9	3,705
2011	1,419	214	299	1,932	334	254	800	379	10	3,709
2012	1,461	167	294	1,922	326	255	767	377	10	3,657
2013	1,458	176	290	1,924	312	255	745	373	11	3,620
2014	1,425	171	284	1,880	321	258	720	366	11	3,556
2015	1,397	169	284	1,850	326	253	696	358	11	3,494

Souce: Swiss Federal Office of Civil Aviation (Bundesamt für Zivilluftfahrt), www.bazl.admin.ch

3.32 Ukraine—Number of Aircraft by Type (2015)

Year	Aircraft Type						Total Aircraft
	Fixed-wing Aeroplanes	Rotorcraft	Ultralights	Balloons	Gliders	Gyrocopters	
2015	462	193	55	19	52	7	788

Source: State Aviation Administration (Державна авіаційна служба України), www.avia.gov.ua/

3.33 United Kingdom—Number of Aircraft by Type (2010-2016)

Year	Number of Registered Aircraft by Type																	Total Aircraft
	Fixed-wing Aeroplanes										Microlights	Rotorcraft	Gliders	Hang Gliders	Balloons and Min. Lift	Airships	Gyroplanes	
	Amphibian	750 kg and Below	$751 \mathrm{~kg}-$ 5,700 kg	$5,701 \mathrm{~kg}-$ $15,000 \mathrm{~kg}$	$\begin{aligned} & 15,001 \mathrm{~kg}- \\ & 50,000 \mathrm{~kg} \end{aligned}$	$\begin{gathered} \text { Over } \\ 50,000 \mathrm{~kg} \end{gathered}$	EASA	NonEASA	SLMG	Seaplanes								
2010	20	3,217	5,764	253	306	742	71	4,456	287	2	4,071	1,364	2,295	8	1,720	18	312	20,379
2011	20	3,199	5,663	228	297	742	74	4,471	285	2	4,043	1,299	2,256	8	1,655	19	324	20,040
2012	21	3,245	5,564	219	293	755	74	4,487	296	2	4,045	1,260	2,248	9	1,639	21	322	19,939
2013	21	3,269	5,505	212	289	761	75	4,531	302	2	4,029	1,232	2,247	9	1,625	20	327	19,850
2014	20	3,300	5,484	200	272	791	74	4,565	314	3	3,998	1,231	2,267	9	1,607	21	329	19,846
2015	21	3,325	5,493	190	260	806	68	4,600	321	3	4,015	1,258	2,260	9	1,598	23	342	19,924
2016	22	3,346	5,503	179	274	833	65	4,639	328	3	4,028	1,290	2,265	9	1,591	20	336	20,027

[^4]Source: UK Civil Aviation Authority, Civil Registry Statistics, G-INFO Database, www.caa.co.uk
Does not differentiate if aeroplane is used for GA or commercial operations.

Data from December 31 of specified year (published first day of the following year).
The category shown as EASA includes aircraft identified as EASA aircraft, but the individual category code has not yet been determined (usually because the aircraft does not have a current CofA).
The category shown as Non-EASA includes either an Annex || aircraft or an aircraft whose
status has not yet been determined.

The registration data shows total by type and has not been adjusted for invalid registrations. The United Kingdom identifies the following number of invalid registrations:
2014: There were 6,265 invalid registrations and 13,581 valid registrations out of a total of 19,846 2015: There were 6,415 invalid registrations and 13,509 valid registrations out of a total of 19,924. 2016: There were 6,649 invalid registrations and 13,378 valid registrations out of a total of 20,027.

Asia－Pacific Fleet Data

4．1 Australia－Number of General Aviation and Regional Aircraft by Category（1995－2015）

Year	Aircraft Type					Total
	Amateur－Built	Fixed－wing Aeroplanes		Rotorcraft	Balloons \＆Airships	
		Single－Engine	Multi－Engine			
1995	－	6，787	1，779	739	243	9，548
1996	－	6，861	1，799	739	266	9，665
1997	－	6，994	1，803	768	284	9，849
1998	－	7，137	1，783	791	295	10，006
1999	－	7，247	1，743	868	310	10，168
2000	－	7，302	1，755	743	325	10，125
2001	673	6，680	1，736	979	334	10，402
2002	707	6，668	1，706	1，038	336	10，455
2003	789	6，727	1，696	1，121	338	10，671
2004	848	6，794	1，718	1，194	350	10，904
2005	896	6，908	1，733	1，292	351	11，180
2006	910	6，838	1，730	1，320	319	11，117
2007	968	6，955	1，804	1，481	333	11，541
2008	1，037	7，180	1，871	1，619	338	12，045
2009	1，071	7，230	1，885	1，703	340	12，229
2010	1，111	7，375	1，932	1，800	346	12，564
2011	1，176	7，410	1，930	1，855	354	12，725
2012	1，187	7，256	1，815	1，817	355	12，430
2013	1，278	7，798	2，053	2，077	379	13，585
2014	1，216	8，512	2，270	2，088	387	14，473
2015	n／a	10，381	2，372	2，139	398	15，290

Amateur－built aircraft registration data was not available in 2015 and is included in the single－engine and multi－engine aeroplane data．

Source：Dept．of Transportation and Regional Services，
Bureau of Transport and Regional Economics，www．bitre．gov．au

4．2 China－Number of Aircraft by Type（2012－2013）

Year	Airplanes				Rotorcraft	Balloons	Airships	Other	Total Aircraft
	Piston－Engine		Turbine－Engine						
	Single	Twin	Turboprop	Turbojet					
2012	705	102	129	2，134	298	21	6	27	3，422
2013	794	96	151	2，371	385	24	6	30	3，857

[^5]
4.3 Japan—Number of Aircraft by Type (1997-2006)

Year	Airplanes					Rotorcraft		Gliders	Airships	Total Aircraft
	Piston		Turboprop		Turbojet or Turbofan					
	Single-Engine	Multi-Engine	Single-Engine	Multi-Engine		Piston-Engine	Turbine-Engine			
1997	605	79	13	120	419	200	804	579	1	2,820
1998	596	69	13	117	443	183	768	596	1	2,786
1999	589	63	13	115	446	182	761	607	1	2,777
2000	584	63	13	110	450	193	764	624	1	2,802
2001	577	62	16	113	455	183	747	644	1	2,798
2002	575	59	17	112	464	166	703	648	1	2,745
2003	570	53	18	112	474	160	661	649	1	2,698
2004	558	52	18	112	474	154	647	658	2	2,675
2005	543	51	18	110	485	160	630	659	2	2,658
2006	540	46	21	112	500	160	618	665	3	2,665

4.4 New Zealand-Number of Aircraft by Type (2000-2016)

Year	Aircraft Type						Total Aircraft
	Airplanes by Mass				Sport	Rotorcraft	
	Below 2,721 kg	2,721-5,670 kg	5,670-13,608 kg	13,608 kg \& Above			
2000	1,522	109	69	75	1,127	411	3,313
2001	1,506	107	67	77	1,129	420	3,306
2002	1,492	105	82	77	1,172	450	3,378
2003	1,505	117	74	83	1,245	506	3,530
2004	1,548	132	68	95	1,358	594	3,795
2005	1,564	143	65	103	1,419	643	3,937
	Agricultural	Small	Medium	Large	Sport	Rotorcraft	
2006	127	1,420	78	117	1,638	653	4,033
2007	124	1,449	82	116	1,723	698	4,192
2008	120	1,492	81	121	1,793	747	4,354
2009	110	1,510	84	118	1,833	760	4,415
2010	110	1,515	84	119	1,853	761	4,442
	Airplane	Microlight ${ }^{182}$	Amateur-Built ${ }^{1}$	Gliders ${ }^{2}$	Other ${ }^{3}$	Rotorcraft	
2012	1,985	1,029	316	417	311	793	4,851
2013	1,976	1,026	291	443	307	831	4,874
2014	1,964	1,058	289	426	329	862	4,928
2015	1,970	1,082	292	430	335	869	4,978
2016	1,981	1,091	300	469	402	874	5,117
The data does not differentiate if airplane is used for GA or commercial operations. In 2006, the CAA stopped publishing the number of registered aircraft by weight in favor of classes. In 2012, the CAA began publishing aircraft registry statistics by aircraft class.		1. Amateur-built aircraft includes airplanes, gliders, and helicopters. 2. Gliders includes gliders, paragliders, power gliders, amateur-built gliders, and hang gliders. 3. Other includes parachutes, gyroplanes, balloons, and jetpack.			Source: Civil Aviation Authority of New Zealand, www.caa.govt.nz		

4.5 Singapore—Number of Aircraft by Type (2012-2016)

Year	Type of Aircraft				Total Aircraft
	General Aviation Airplanes		Rotorcraft	Airline	
	Piston	Turbine			
2012	23	0	2	178	203
2013	22	0	1	191	214
2014	20	0	4	200	224
2015	22	0	2	203	227
2016	15	0	1	203	219

Select Other GA
 Aircraft Registry Data for Large Fleets

5.1 Brazil—Number of Aircraft Registrations by Type (1999-2016)

Year	Aircraft Type									Total Aircraft
	Airplanes				Other Aircraft					
	Piston-Engine	Agricultural	Turboprop	Jet Turbine	Helicopters	Sailplanes	Balloons	Dirigibles	Experimental	
1999	8,273	684	1,192	497	791	307	4	1	3,152	14,217
2000	8,333	724	1,218	500	841	308	4	1	3,348	14,553
2001	8,412	767	1,260	542	897	309	3	1	3,513	14,937
2002	8,445	810	1,303	579	940	310	3	1	3,684	15,265
2003	8,496	862	1,323	560	955	316	3	1	3,882	15,536
2004	8,604	900	1,348	559	981	316	3	1	4,069	15,881
2005	8,718	955	1,361	596	989	316	3	1	4,286	16,270
2006	8,798	978	1,399	603	1,011	309	3	1	3,001	15,125
2007	8,909	1,005	1,488	647	1,097	303	3	1	3,225	15,673
2008	9,164	1,049	1,617	773	1,194	299	3	1	3,525	16,576
2009	9,354	1,044	1,700	820	1,325	300	3	1	3,764	19,765
2010	n/a	1,581	n/a	n/a	1,524	n/a	n/a	n/a	4,051	17,335
2011	n/a	1,695	n/a	n/a	1,717	n/a	n/a	n/a	4,474	18,710
2012	n/a	1,800	n/a	n/a	1,909	n/a	n/a	n/a	4,750	19,769
2013	n/a	1,870	n / a	n/a	2,038	n/a	n/a	n/a	4,906	20,429
2014	n/a									
2015	n/a									
2016	16,503	n/a	820	2,445	1,582	592	n/a	n / a	n/a	23,984

The experimental category includes ultralights, balloons, gyrocopters, sailplanes, motorpowered sailplanes, dirigibles, and experimental airplanes starting in 2010.
ANAC began identification of agricultural aircraft in 2012. The data set for
Aircraft registration data for 2014 and 2015 Source: Agência Nacional de Aviação Civil (ANAC), Brazil, www.anac.gov.br was not available at time of publication. The data for 2016 does not include aircraft
agricultural aircraft captures aircraft also identified in other columns. that have not been classified by ANAC.

5.2 South Africa—Number of General Aviation Aircraft by Type (1999-2014)

Year	Aircraft Type														Total Aircraft
	Aeroplanes											Helicopters		Sport, Rec., Gliders, \& Other	
	Piston-Engine Powered				Turboprop				Turbojet						
	OneEngine	TwoEngine	Other	Agricultural	OneEngine	TwoEngine	Other	Agricultural	TwoEngine	ThreeEngine	Other	Piston	Turbine		
1999	2,282	695	4	144	66	201	10	43	157	17	21	228	251	3,103	7,222
2000	2,285	706	6	143	68	215	10	45	160	20	21	248	263	3,294	7,484
2001	2,280	701	6	144	79	237	10	48	164	27	22	258	271	3,470	7,717
2002	2,299	698	10	144	83	249	8	46	176	29	27	263	279	3,616	7,927
2003	2,338	716	12	148	91	271	8	52	197	31	34	308	290	3,907	8,403
2004	2,422	724	11	151	88	306	9	54	189	34	41	348	318	4,127	8,822
2005	2,459	731	10	150	93	310	8	56	206	21	44	385	337	4,253	9,063
2006	2,608	738	8	159	110	331	6	53	261	18	58	514	384	4,941	10,189
2007	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2008	2,666	755	7	153	108	324	10	55	299	18	74	575	434	5,215	10,693
2009	2,712	751	7	154	105	329	9	54	315	15	82	604	461	5,352	10,950
2010	2,745	713	8	154	111	353	9	55	339	15	92	635	474	5,500	11,203
2011	2,808	710	9	152	112	353	9	54	365	16	93	669	459	5,674	11,483
2012	2,851	707	10	153	113	349	8	54	377	18	87	671	502	5,846	11,746
2013	2,898	711	12	154	115	341	7	55	381	18	88	680	522	5,964	11,946
2014	2893	716	28	157	120	347	8	60	395	18	87	687	540	6,072	12,128

[^6][^7]

6.1 Active FAA Certificated Pilots (1980-2016)

Year	Pilots		Students ${ }^{7}$	Rec. ${ }^{5}$	Sport ${ }^{6}$	Airplane ${ }^{\text {a }}$			Rotorcraft (Only)	$\begin{aligned} & \text { Clider } \\ & \left(\text { Only }{ }^{2}\right. \end{aligned}$	$\begin{aligned} & \text { Lighter- } \\ & \text { Than-Air } \end{aligned}$	Remote Pilot?	$\begin{gathered} \text { Flight } \\ \text { Instructor } \end{gathered}$	Instrument Ratings ${ }^{\text {3,4 }}$	
	Total	\% Women				Private	Commercial	ATP						Total	\% of Total
1980	827,071	6.40\%	199,833			357,479	183,442	69,569	6,030	7,039	3,679		60,440	260,461	41.5\%
1981	764,182	6.24\%	179,912			328,562	168,580	70,311	6,453	7,388	2,976		57,523	252,535	43.2\%
1982	733,255	6.18\%	156,361			322,094	165,093	73,471	7,034	7,842	1,360		62,492	255,073	44.2\%
1983	718,004	6.08\%	147,197			318,643	159,495	75,938	7,237	8,157	1,337		62,201	254,271	44.5\%
1984	722,376	6.14\%	150,081			320,086	155,929	79,192	7,532	8,390	1,166		61,173	256,584	44.8\%
1985	709,540	6.13\%	146,652			311,086	151,632	82,740	8,123	8,168	1,139		58,940	258,559	45.9\%
1986	709,118	6.08\%	150,273			305,736	147,798	87,186	8,122	8,411	1,133		57,355	262,388	47.0\%
1987	699,653	6.09\%	146,016			300,949	143,645	91,287	8,702	7,901	1,153		60,316	266,122	48.1\%
1988	694,016	6.09\%	136,913			299,786	143,030	96,968	8,608	7,600	1,111		61,798	273,804	49.1\%
1989	700,010	6.05\%	142,544			293,179	144,540	102,087	8,863	7,708	1,089		61,472	282,804	50.7\%
1990	702,659	5.77\%	128,663	87		299,111	149,666	107,732	9,567	7,833	n/a		63,775	297,073	51.8\%
1991	692,095	5.91\%	120,203	161		293,306	148,385	112,167	9,860	8,033	n/a		69,209	303,193	53.0\%
1992	682,959	5.95\%	114,597	187		288,078	146,385	115,855	9,652	8,205	n/a		72,148	306,169	53.9\%
1993	665,069	5.93\%	103,583	206		283,700	143,014	117,070	9,168	8,328	n/a		75,021	305,517	54.4\%
1994	654,088	5.99\%	96,254	241		284,236	138,728	117,434	8,719	8,476	n/a		76,171	302,300	54.2\%
1995	639,184	5.67\%	101,279	232		261,399	133,980	123,877	7,183	11,234	n/a		77,613	298,798	55.6\%
1996	622,261	5.57\%	94,947	265		254,002	129,187	127,486	6,961	9,413	n/a		78,551	297,895	56.5\%
1997	616,342	5.59\%	96,101	284		247,604	125,300	130,858	6,801	9,394	n/a		78,102	297,409	57.2\%
1998	618,298	5.72\%	97,736	305		247,226	122,053	134,612	6,964	9,402	n/a		79,171	300,183	57.7\%
1999	635,472	5.81\%	97,359	343		258,749	124,261	137,642	7,728	9,390	n/a		79,694	308,951	57.5\%
2000	625,581	6.11\%	93,064	340		251,561	121,858	141,596	7,775	9,387	n/a		80,931	311,944	58.6\%
2001	612,274	5.82\%	86,731	316		243,823	120,502	144,702	7,727	8,473	n/a		82,875	315,276	60.0\%
2002	631,762	5.49\%	85,991	317		245,230	125,920	144,708	7,770	21,826	n/a		86,089	317,389	58.2\%
2003	625,011	6.12\%	87,296	310		241,045	123,990	143,504	7,916	20,950	n/a		87,816	315,413	58.7\%
2004	618,633	6.09\%	87,910	291		235,994	122,592	142,160	8,586	21,100	n/a		89,596	313,545	59.1\%
2005	609,737	6.11\%	87,213	276	134	228,619	120,614	141,992	9,518	21,369	n/a		90,555	311,828	59.7\%
2006	597,109	6.13\%	84,866	239	939	219,233	117,610	141,935	10,690	21,597	n/a		91,343	309,333	60.5\%
2007	590,349	6.12\%	84,339	239	2,031	211,096	115,127	143,953	12,290	21,274	n/a	-	92,175	309,865	61.5\%
2008	613,746	5.83\%	80,989	252	2,623	222,596	124,746	146,838	14,647	21,055	n/a		93,202	325,247	61.4\%
2009	594,285	6.39\%	72,280	234	3,448	211,619	125,738	144,600	15,298	21,268	n/a		94,863	323,495	62.4\%
2010	627,588	5.86\%	119,119	212	3,682	202,020	123,705	142,198	15,377	21,275	n/a	-	96,473	318,001	63.0\%
2011	617,128	6.39\%	118,657	227	4,066	194,441	120,865	142,511	15,220	21,141	n/a		97,409	314,122	63.6\%
2012	610,576	6.77\%	119,946	218	4,493	188,001	116,400	145,590	15,126	20,802	n/a		98,328	311,952	64.2\%
2013	599,086	6.78\%	120,285	238	4,824	180,214	108,206	149,824	15,114	20,381	n/a		98,842	307,120	64.8\%
2014	593,499	6.63\%	120,546	220	5,157	174,883	104,322	152,933	15,511	19,927	n/a	-	100,993	306,066	65.5\%
2015	590,038	6.66\%	122,729	190	5,482	170,718	101,164	154,730	15,566	19,460	n/a		102,628	304,329	71.3\%
2016	584,362	6.71\%	128,501	175	5,889	162,313	96,081	157,894	15,518	17,991	n/a	20,362	104,224	302,241	67.2\%

6.2 Active FAA Certificated Pilots and Flight Instructors by State and Region (as of December 31, 2016)

	FAA Region and State	Total Pilots	Students	Recreational	Sport	Airplane			Rotor, Glider, \& Balloon	Remote Pilot	Flight Instructor ${ }^{1}$
						Private	Commercial	Airline Transport			
	Total ${ }^{2}$	584,361	128,501	178	5,889	174,517	112,056	163,220	80,142	20,362	104,382
	United States - Total ${ }^{3}$	541,338	118,047	176	5,864	166,294	95,882	155,075	75,675	20,236	101,596
	Non-U.S. Total ${ }^{5}$	43,023	10,454	2	25	8,223	16,174	8,145	4,467	126	2,786
	Alabama	6,992	1,506	4	71	2,067	1,880	1,464	1,767	324	1,571
	Alaska	7,864	1,327	1	55	2,679	1,563	2,239	990	169	1,404
	American Samoa	5	0	0	0	0	1	4	0	0	0
	Arizona	18,278	4,059	1	156	4,753	3,623	5,686	3,405	511	3,965
	Arkansas	4,924	1,172	1	84	1,663	1,029	975	438	156	757
	California	58,008	13,392	6	482	20,834	10,775	12,519	8,876	2,308	9,696
	Colorado	17,342	3,375	4	132	4,662	2,892	6,277	2,694	663	3,756
	Connecticut	4,768	905	0	28	1,659	763	1,413	694	205	875
	Delaware	1,297	308	0	12	345	201	431	182	73	269
	District of Columbia	558	155	0	6	199	80	118	68	31	100
	Federated States of Micronesia	3	0	0	0	0	2	1	1	0	1
	Florida	55,692	13,844	6	544	13,090	9,959	18,249	7,167	1,783	10,183
	Georgia	17,671	3,233	5	147	4,461	2,417	7,408	2,144	564	3,390
	Guam	193	25	0	0	19	21	128	28	5	51
	Hawaii	3,126	667	0	14	538	678	1,229	763	164	731
	Idaho	4,858	962	2	81	1,779	1,007	1,027	879	170	894
	Illinois	15,902	3,302	4	279	5,022	2,417	4,878	1,724	707	3,377
	Indiana	9,384	2,027	8	200	3,252	1,565	2,332	940	302	1,693
	lowa	4,863	1,039	5	101	2,071	903	744	522	224	818
	Kansas	6,736	1,388	1	81	2,597	1,270	1,399	760	263	1,455
	Kentucky	5,647	1,187	8	57	1,477	831	2,087	715	233	1,060
	Louisiana	5,441	1,251	1	66	1,684	1,201	1,238	1,018	208	936
	Maine	2,385	504	1	49	849	436	546	289	118	383
	Marshall Islands	2	0	0	0	0	0	2	0	0	0
	Maryland	7,636	2,208	0	86	2,258	1,252	1,832	1,067	366	1,360
	Massachusetts	7,536	1,876	1	66	2,776	1,213	1,604	910	342	1,235
	Michigan	13,142	2,694	9	211	4,711	2,206	3,311	1,436	529	2,493
	Minnesota	11,972	2,033	1	107	3,965	1,943	3,923	992	381	2,627
	Mississippi	3,967	1,036	1	30	1,134	761	1,005	442	135	646
	Missouri	8,825	1,932	6	150	3,002	1,528	2,207	1,142	354	1,604
	Montana	3,697	769	2	30	1,373	861	662	618	112	694
	Nebraska	3,459	830	0	35	1,330	630	634	271	156	504
	Nevada	7,078	1,225	0	53	1,774	1,332	2,694	1,489	247	1,537
	New Hampshire	3,568	540	1	49	1,011	560	1,407	574	131	732
	New Jersey	8,432	1,922	5	40	2,699	1,377	2,389	1,242	393	1,624
0	New Mexico	4,210	969	3	72	1,443	1,011	712	1,277	142	625
$\stackrel{\square}{4}$	New York	15,447	4,282	16	134	5,198	2,673	3,144	2,156	710	2,605
\bigcirc	North Carolina	13,871	2,724	5	148	4,287	2,210	4,497	1,796	607	2,665
	North Dakota	3,482	856	0	23	1,101	1,179	323	230	119	496
范	Northern Mariana Islands	17	4	0	0	1	5	7	1	0	6
$\frac{\square}{0}$	Ohio	14,712	3,100	23	243	4,985	2,308	4,053	1,735	608	2,933
$\underline{ }$	Oklahoma	7,679	2,047	2	50	2,499	1,486	1,595	697	282	1,307
N	Oregon	8,730	1,790	4	93	3,311	1,951	1,581	1,866	374	1,693
$\stackrel{\text { ® }}{ }$	Palau	1	0	0	0	1	0	0	1	0	0
-	Pennsylvania	14,553	3,048	16	186	4,655	2,334	4,314	2,269	617	2,782
$\stackrel{\sim}{\sim}$	Puerto Rico	1,501	549	0	49	331	220	352	153	40	214
O	Rhode Island	917	211	0	6	307	148	245	101	36	153
-	South Carolina	6,400	1,181	0	71	1,956	1,123	2,069	868	221	1,152
$\stackrel{\square}{0}$	South Dakota	2,197	453	0	54	784	468	438	275	61	435
0	Tennessee	11,485	2,206	2	103	3,069	1,830	4,275	1,593	405	2,203
T0	Texas	49,538	10,362	3	386	13,525	8,192	17,070	6,588	1,652	9,130
-	Utah	8,064	1,815	0	67	2,167	1,496	2,519	1,254	250	1,710
$\stackrel{+}{\square}$	Vermont	1,227	251	0	10	464	253	249	249	54	193
$\stackrel{\sim}{*}$	Virgin Islands	172	44	0	1	51	32	44	20	1	23
\bigcirc	Virginia	13,775	2,878	8	152	3,842	2,522	4,373	2,217	604	2,781
. O	Washington	19,097	3,786	3	200	5,739	3,170	6,199	2,690	644	3,730
. $\frac{0}{7}$	West Virginia	1,640	404	0	40	588	307	301	234	89	278
<	Wisconsin	8,816	1,729	5	248	3,409	1,266	2,159	752	327	1,614
$\overline{0}$	Wyoming	1,827	397	2	21	726	346	335	268	62	290
$\stackrel{\square}{\square}$	AA - Americas ${ }^{4}$	19	1	0	0	5	5	8	7	0	8
$\stackrel{\square}{0}$	AE - Europe and Canada ${ }^{4}$	275	69	0	3	56	68	79	54	2	79
\bigcirc	AP - Pacific ${ }^{4}$	435	198	0	2	61	102	72	77	2	70
$\stackrel{0}{\circ}$	1. Not included in total. 2. Includes non-U.S total. 3. Includes American Samoa, Federated States of Micronesia, Guam, Marshall Islands, Northern Mariana Islands, Palau, Puerto Rico, and Virgin Islands.			4. Military personnel holding civilian certificates and stationed in foreign country. 5. Non-U.S. are non-U.S. nationals who hold FAA certificates.							Source: FA

6.3 Active FAA Pilot Certificates Held by Category and Age Group of Holder (as of December 31, 2016)

Age Group	Type of Pilot Certificate								
	Total Plots	Student	Recreational	Sport Pilot	Private	Commercial	Airline Transport	Remote Pilot	CFI
Total	584,361	128,501	178	5,889	174,517	112,056	163,220	20,362	104,382
14-15	259	259	0	0	0	0	0	0	0
16-19	16,491	12,697	3	16	3,482	293	0	214	56
20-24	57,599	31,808	28	112	14,815	10,058	778	1,388	3,637
25-29	64,176	26,837	30	201	13,698	17,703	5,707	2,397	8,101
30-34	55,351	17,693	12	239	13,167	12,011	12,229	2,761	11,884
35-39	50,246	12,314	10	234	12,342	8,997	16,349	2,564	11,919
40-44	44,770	6,212	9	292	12,577	7,513	18,167	2,217	10,691
45-49	49,254	5,571	11	427	13,322	7,417	22,506	2,143	11,642
50-54	56,377	4,962	11	676	16,929	8,214	25,585	2,094	10,614
55-59	59,558	4,069	19	933	20,822	8,966	24,749	1,746	9,733
60-64	52,066	2,847	15	993	21,015	9,275	17,921	1,425	8,703
65-69	36,580	1,798	14	807	15,516	8,598	9,847	893	7,572
70-74	23,543	954	9	560	9,758	6,762	5,500	376	5,499
75-79	11,018	328	3	266	4,382	3,574	2,465	118	2,683
80 and over	7,073	152	4	133	2,692	2,675	1,417	26	1,648

Source: FAA

6.4 Average Age of Active FAA Pilots by Category (1993-2016)

Year	Average All Plots	Type of Plot Certificate					
		Student	Recreational	Sport Pilot	Private	Commercial	Airline Transport
1993	41.3	33.7	45.5	-	42.7	41.9	44.1
1994	41.9	34.3	46.5	-	43.2	42.4	44.4
1995	42.9	34.5	48.3	-	44.6	43.7	44.9
1996	43.2	34.6	49.3	-	45.1	44.1	45.1
1997	43.6	34.6	49.5	-	45.6	44.6	45.6
1998	43.8	34.7	49.8	-	45.9	45.0	45.4
1999	43.6	34.6	49.5	-	45.6	44.6	45.3
2000	43.7	34.1	49.8	-	45.6	44.9	45.8
2001	44.0	33.3	50.8	-	46.0	45.0	46.0
2002	44.4	33.7	51.0	-	46.2	45.5	46.6
2003	44.7	34.0	51.5	-	46.5	45.6	47.0
2004	45.1	34.2	51.3	-	47.0	45.9	47.5
2005	45.5	34.6	50.9	53.2	47.4	46.0	47.8
2006	45.6	34.4	51.5	52.9	47.7	46.1	48.1
2007	45.7	34.0	52.4	52.9	48.0	46.1	48.3
2008	45.1	33.6	50.1	53.2	46.9	44.8	48.5
2009	45.3	33.5	50.4	53.5	47.1	44.2	48.9
2010	44.2	31.4	50.8	53.8	47.6	44.2	49.4
2011	44.4	31.4	48.8	54.4	47.9	44.4	49.7
2012	44.7	31.5	47.8	54.7	48.3	44.8	49.9
2013	44.8	31.5	44.8	55.2	48.5	45.4	49.7
2014	44.8	31.5	43.1	55.8	48.5	45.5	49.8
2015	44.8	31.4	44.6	56.2	48.5	45.6	49.9
2016	44.9	31.7	44.0	56.4	48.4	46.0	50.2

6.5 FAA Pilot Certificates Issued by Category (1978-2015)

Year	Student		Private		Commercial		Airline Transport		Helicopter (only)		Clider (only)	
	Original	Additional										
1978	137,032	-	58,064	16,048	11,789	17,501	6,912	5,921	1,122	287	759	188
1979	135,956	-	54,466	16,466	12,627	17,793	8,981	6,603	1,300	283	642	157
1980	102,301	-	50,458	16,035	12,452	16,015	7,116	6,289	1,721	272	583	151
1981	111,531	-	45,713	14,897	10,657	12,146	4,763	5,991	1,985	302	629	164
1982	90,816	-	52,144	16,276	11,048	11,910	5,037	7,956	2,256	330	793	184
1983	92,239	-	41,210	12,721	8,789	9,513	5,643	8,187	1,932	315	606	162
1984	90,167	-	36,545	11,784	7,702	8,895	5,099	9,335	1,808	319	524	139
1985	86,060	-	35,402	11,636	8,404	7,197	6,081	9,192	2,105	207	537	138
1986	88,699	-	34,816	12,672	8,889	9,241	6,498	10,372	2,209	234	514	109
1987	85,611	-	42,287	16,302	11,314	11,635	7,678	11,956	2,217	293	542	74
1988	86,193	-	39,900	15,800	12,042	10,597	7,461	11,209	1,947	287	475	28
1989	87,698	-	35,360	22,240	13,759	11,778	7,829	12,698	2,240	252	336	22
1990	88,586	-	41,749	19,299	15,500	12,584	8,013	13,540	2,700	266	378	41
1991	82,205	-	49,580	23,630	16,869	13,506	8,437	13,979	3,344	291	487	29
1992	78,377	-	39,968	19,419	14,354	11,630	7,699	13,391	2,684	291	376	32
1993	69,178	-	39,060	18,801	12,645	10,466	6,129	12,995	2,310	30	341	28
1994	66,501	-	32,787	14,568	9,237	8,630	5,360	10,963	1,801	267	320	25
1995	60,497	-	28,333	15,331	9,133	9,042	5,965	13,641	1,724	290	373	83
1996	56,653	-	24,714	18,199	10,245	10,494	7,444	17,229	1,638	349	633	195
1997	60,941	-	21,552	13,522	8,988	9,587	7,045	16,266	1,385	296	501	161
1998	63,037	756	26,297	15,966	10,042	10,269	7,547	19,085	1,530	211	472	105
1999	58,278	1,030	24,630	15,222	9,737	9,963	6,721	19,380	1,514	222	423	98
2000	58,042	1,070	27,223	17,223	11,813	11,652	7,715	20,558	1,776	234	455	62
2001	61,897	1,161	25,372	16,807	11,499	11,115	7,070	21,357	1,698	218	403	77
2002	65,421	1,317	28,659	18,607	12,299	11,628	4,718	18,502	2,073	275	336	38
2003	58,842	1,230	23,866	14,899	9,670	8,872	3,892	13,196	2,013	269	312	47
2004	59,202	1,302	23,031	14,234	9,836	9,635	4,255	15,328	2,736	366	309	43
2005	53,576	1,418	20,889	12,952	8,834	8,874	4,750	15,534	2,917	521	290	27
2006	61,448	1,551	20,217	13,079	8,687	9,603	4,748	15,942	3,569	816	298	42
2007	66,953	1,450	20,299	13,970	9,318	9,574	5,918	15,973	4,073	1,041	263	14
2008	61,194	1,507	19,052	14,409	10,595	10,202	5,204	15,658	3,639	930	204	11
2009	54,876	2,006	19,893	14,570	11,350	9,399	3,113	11,605	3,648	1,011	249	10
2010	54,064	1,057	14,977	10,260	8,056	7,778	3,072	10,890	2,686	670	222	8
2011	55,298	857	16,802	10,703	8,559	10,027	4,677	13,694	3,123	894	219	10
2012	54,370	694	16,571	10,720	8,651	9,341	6,396	12,768	2,892	900	180	0
2013	49,566	676	15,776	10,098	8,140	7,922	8,346	13,288	2,888	899	163	1
2014	49,261	698	17,795	11,396	9,803	8,840	7,749	19,481	3,754	1,072	195	5
2015	49,062	590	16,473	11,067	9,211	8,348	6,544	19,823	2,999	957	188	3

An additional rating is added to an existing pilot certificate (e.g., instrument rating added to a private certificate).

DEFINITIONS

Active Pilot - A pilot who holds a pilot certificate and a valid medical certificate (except for sport pilots).

Airman - A pilot, mechanic, or other licensed aviation technician. The term refers to men and women.

Airman Certificate - A document issued by the Administrator of the Federal Aviation Administration. The Airman Certificate certifies that the holder complies with the regulations governing the capacity in which the certificate authorizes the holder to act as an airman in connection with an aircraft.

6.6 FAA Non-Pilot Certificates (2000-2016)

Year	Mechanic	Repairman	Parachute Rigger	Ground Instructor	Dispatcher	Flight Navigator	Flight Engineer	Flight Attendant ${ }^{3}$
2000	344,434	38,208	10,477	72,326	16,340	570	65,098	n/a
2001	310,850	40,085	7,927	72,261	16,070	509	65,398	n/a
2002	315,928	37,114	8,063	73,658	16,695	431	63,681	n/a
2003	313,032	37,248	7,883	72,692	16,955	382	61,643	n/a
2004	317,111	39,231	8,011	73,735	17,493	336	59,376	n/a
2005	320,293	40,030	8,150	74,378	18,079	298	57,756	125,032
2006	323,097	40,329	8,252	74,849	18,610	264	55,952	134,874
2007	322,852	40,277	8,186	74,544	19,043	250	54,394	147,013
2008	326,276	41,056	8,248	74,983	19,590	222	53,135	154,671
2009	329,027	41,389	8,362	75,461	20,132	181	51,022	156,741
2010	308,367	41,196	8,009	70,560	16,576	171	48,569	156,368
2011	335,431	40,802	8,491	74,586	21,363	146	47,659	167,037
2012	337,775	40,444	8,474	73,599	21,862	141	46,639	172,357
2013	338,844	39,952	8,491	72,493	22,401	126	45,317	179,531
2014	341,409	39,566	8,702	71,755	23,113	115	43,803	188,936
2015	342,528	39,363	8,846	70,957	23,754	102	42,460	200,319
2016	279,435	34,411	5,851	65,053	19,758	67	35,761	212,607

1. Number of non-pilot certificates represents all certificates on record since no medical examination is required.
2. Airmen without a plastic certificate are no longer considered active by the FAA starting with the 2016 data.
3. Flight attendant information was first available from FAA Registry in 2005.

PILOT CATEGORIES

Student Pilot - A student pilot must be 16 years old, medically certificated by a Federal Aviation Administration (FAA) medical examiner, and may only fly solo under the supervision of a flight instructor. A student pilot may not operate an aircraft that is carrying passengers or that is carrying property for compensation or hire.

Recreational Pilot - A recreational pilot may fly no more than one passenger in a light, single-engine aircraft with no more than four seats, during good weather and daylight hours, and unless otherwise authorized, not more than 50 miles from his or her home airport.

Sport Pilot - A sport pilot may operate a light-sport aircraft under a limited set of flight conditions. The certificate does not require an FAA medical examination, but the pilot can carry a driver's license as proof of medical competence. Holders of a sport pilot certificate may fly an aircraft with a standard airworthiness certificate if the aircraft meets the definition of a light-sport aircraft.

Private Pilot - A private pilot may carry passengers in any aircraft. The private pilot may not act as pilot-incommand of an aircraft that is carrying passengers for compensation or hire or act as pilot-in-command of an aircraft that is being operated for compensation or hire (such as an aircraft hired to conduct pipeline patrol but carrying no passengers).

Commercial Pilot - A commercial pilot may act as pilot-in-command of an aircraft that is carrying passengers for compensation or hire, and as pilot-in-command of an aircraft that is being operated for compensation or hire, but not as pilot-in-command of an aircraft in air carrier service.

Airline Transport Pilot - An airline transport pilot may act as pilot-in-command of an aircraft in air carrier service.

Airports and Aeronautical Facilities

7.1 Airports by Country, Europe (2010-2014 Estimates)

Country	Airoorts with Paved Runways						Airports with Unpaved Runways						Heliports
	Total Airports	$\begin{aligned} & \text { Over } \\ & 10,000 \mathrm{ft} \end{aligned}$	$8,000 \mathrm{ft}$ to 10,000 ft	5,000 ft to 8,000 ft	$\begin{aligned} & 3,000 \mathrm{ft} \mathrm{to} \\ & 5,000 \mathrm{ft} \end{aligned}$	$\begin{gathered} \text { Under } \\ 3,000 \mathrm{ft} \end{gathered}$	Total Airports	$\begin{aligned} & \text { Over } \\ & 10,000 \mathrm{ft} \end{aligned}$	$8,000 \mathrm{ft}$ to $10,000 \mathrm{ft}$	$\begin{gathered} 5,000 \mathrm{ft} \text { to } \\ 8,000 \mathrm{ft} \end{gathered}$	3,000 ft to 5,000 ft	$\begin{gathered} \text { Under } \\ 3,000 \mathrm{ft} \end{gathered}$	
Albania	4	-	3	1	-	-	1	-	-	-	1	-	1
Andorra	.	-	-	-	-	-	.	-		-	-	-	-
Armenia	10	2	2	4	2	-	1	-	-	-	1	-	-
Austria	24	1	5	1	4	13	28	-	-	1	3	24	1
Azerbaijan	30	5	5	13	4	3	7	-	-	-	-	7	1
Belarus	33		20	4	1	7	32	1		1	2	28	1
Belgium	27	6	9	2	1	9	18	-	-	-	-	16	1
Bosnia-Herz	7	-	4	1	-	2	18	-	-	1	6	11	6
Bulgaria	124	2	17	15	-	90	78	-	-	-	6	72	2
Croatia	24	2	6	3	3	10	45	-	-	1	6	38	1
Cyprus	13	-	6	3	3	1	2	-	-	-	-	2	9
Czech Rep.	41	2	9	12	2	16	87	-	-	1	26	60	1
Denmark	28	2	7	4	12	3	61	-	-	-	2	59	.
Estonia	13	2	8	2	1	-	5	-	-	1	1	3	1
Finland	75	3	26	10	21	15	73	-	-	-	3	70	-
France	297	14	26	98	83	76	176	-	-	-	67	109	1
Georgia	18	1	7	3	5	2	4	-	-	1	2	1	-
Germany	322	14	48	60	70	130	219	-	-	2	32	185	2
Greece	67	6	15	19	18	9	15	-	-	-	2	13	9
Hungary	20	2	6	5	6	1	21	-	-	2	8	11	3
Iceland	6	1	-	3	2	-	93	-	-	3	27	63	.
Ireland	16	1	1	4	5	5	23	-	-	-	2	21	.
Italy	99	9	31	18	29	12	31	-	-	1	11	19	5
Latvia	19	1	3	5	3	7	23	-	-	.	.	23	1
Liechtenstein	-	-	-	-	-	-	-	-	-	-	-	-	.
Lithuania	26	3	1	7	2	13	55	1	-	-	2	52	-
Luxembourg	1	1	-	-	-	-	1	-	-	-	-	1	1
Macedonia	10	-	2	-	-	8	4	-	-	-	1	3	.
Malta	1	1	-	-	-	.	.	-	-	-	.	-	2
Moldova	5	1	2	2	-	-	2	-	-	-	1	1	
Monaco	.	-	-	-	-	-	.	-	-	-	-	-	1
Montenegro	5	-	2	1	1	1	1	-	-	-	1	-	1
Netherlands	20	2	10	2	5	1	7	-	-	-	3	4	1
Norway	67	1	12	11	19	24	31	-	-	-	6	25	1
Poland	86	5	29	37	9	6	39	-	-	1	17	21	6
Portugal	43	5	7	8	13	10	22	-	-	-	1	21	.
Romania	26	4	10	11	-	1	27	-	-	-	6	21	4
Serbia	11	2	3	3	3	-	19	-	-	1	10		2
Slovakia	19	2	2	3	3	9	18	-	-	-	10	8	1
Slovenia	7	1	1	1	3	1	9	-	-	1	3	5	.
Spain	98	18	12	19	25	24	54	-	-	2	14	38	10
Sweden	149	3	12	74	23	37	81	-	-	-	5	76	2
Switzerland	41	3	2	13	6	17	23	-	-	-	-	23	1
Turkey	89	16	35	17	17	4	9	-	-	1	4	4	20
Ukraine	108	13	42	22	3	28	79	-	-	5	5	69	9
United Kingdom	272	7	31	93	76	65	190	-	-	2	25	163	9
Europe Total	2,401	165	479	614	483	660	1,732	2	-	28	322	1,378	137
United States	5,054	189	235	1,478	2,249	903	8,459	1	6	140	1,552	6,760	5,287

7.2 U.S. Civil and Joint Use Airports, Heliports, and Seaplane Bases on Record by Type of Ownership (2010)

State or Territory	State or Territory Total	Public Use		Civil Private Use Landing Facilities							Military-Only Use
								Other			
		Total	Part 139	Total	Airports	Heliports	Bases	Gliderports	Balloon Ports	Ultralight Flightparks	
Grand Total	19,750	5,178	559	14,120	8,405	5,425	290	31	13	134	274
United States Total	19,729	5,168	551	14,111	8,403	5,418	290	31	13	134	272
Alabama	281	98	10	172	87	81	4	-	-	-	11
Alaska	734	408	26	307	245	38	24	-	-	-	19
American Samoa	4	3	3	1	1	-	-	-	-	-	-
Arizona	314	79	14	219	107	112	-	2	-	6	8
Arkansas	307	99	9	199	118	81	-	2	-	4	3
California	960	257	36	671	263	404	4	3	-	1	28
Colorado	449	76	16	365	186	179	-	1	1	1	5
Connecticut	146	23	5	122	35	82	5	-	-	1	-
Delaware	42	11	1	30	21	9	-	-	-	-	1
District of Columbia	20	3	2	13	-	13	-	-	-	-	4
Florida	857	127	25	697	370	289	38	2	-	5	26
Georgia	461	110	10	339	227	110	2	1	-	1	10
Guam	3	1	1	1	-	1	-	-	-	-	1
Hawaii	50	14	7	30	14	16	-	-	-	-	6
Idaho	280	119	7	158	108	49	1	-	-	2	1
Illinois	788	115	17	665	413	247	5	2	-	5	1
Indiana	610	107	12	487	348	123	16	-	-	11	5
lowa	289	121	8	162	79	83	-	-	-	3	3
Kansas	383	141	10	238	203	35	-	1	1	-	2
Kentucky	223	60	7	157	95	62	-	-	-	4	2
Louisiana	480	75	9	381	150	219	12	-	-	20	4
Maine	175	68	6	104	64	17	23	-	-	2	1
Maryland	226	37	3	182	111	67	4	-	-	-	7
Massachusetts	241	40	8	198	39	142	17	-	1	1	1
Michigan	467	228	20	236	142	89	5	-	-	2	1
Midway Atoll	2	1	1	1	1	-	-	-	-	-	-
Minnesota	469	154	9	313	203	59	51	-	-	1	1
Mississippi	244	80	11	157	107	50	-	-	-	1	6
Missouri	518	132	11	380	251	128	1	-	-	3	3
Montana	258	121	15	134	102	31	1	-	-	1	2
N. Mariana Islands	11	5	3	6	-	6	-	-	-	-	-
Nebraska	244	86	9	156	122	34	-	-	-	-	2
Nevada	125	49	5	69	43	26	-	1	-	1	5
New Hampshire	139	25	3	114	28	79	7	-	-	-	-
New Jersey	314	46	4	256	54	196	6	-	5	-	7
New Mexico	174	61	9	107	81	26	-	-	-	1	5
New York	603	148	24	448	263	175	10	2	1	3	1
North Carolina	429	112	15	300	212	88	-	1	1	4	11
North Dakota	281	89	8	190	175	15	-	-	-	-	2
Ohio	729	170	13	554	344	209	1	2	1	1	1
Oklahoma	390	140	4	240	160	80	-	-	-	4	6
Oregon	420	97	10	322	231	90	1	1	-	-	-
Pennsylvania	821	132	16	662	316	339	7	2	-	18	7
Puerto Rico	52	12	4	39	6	31	2	-	-	-	1
Rhode Island	31	8	1	22	3	17	2	-	1	-	-
South Carolina	196	68	8	119	86	31	2	1	-	3	5
South Dakota	178	74	7	103	70	33	-	-	-	-	1
Tennessee	311	81	8	226	124	101	1	-	-	2	2
Texas	2,006	391	31	1,578	1,050	528	-	6	-	9	22
Utah	142	46	9	93	44	49	-	-	-	-	3
Vermont	81	16	2	65	45	14	6	-	-	-	-
Virgin Islands	8	2	2	6	-	4	2	-	-	-	-
Virginia	427	66	7	340	213	125	2	1	1	1	18
Wake Island	1	-	-	-	-	-	-	-	-	-	1
Washington	552	137	11	403	240	157	6	-	-	3	9
West Virginia	120	35	8	83	38	35	10	-	-	1	1
Wisconsin	565	133	9	422	315	95	12	-	-	8	2
Wyoming	119	41	10	78	52	26	-	-	-	-	-

$\begin{aligned} & \text { Rank } \\ & 2016 \end{aligned}$	Facility	Airport Name and State	General Aviation Operations					Total Airport Operations	Total GA Operations	GA as \% of Total	Tower Operations
			IFR GA		VFR GA		Local Civil GA				
			Itinerant	Overflight	Itinerant	Overflight					
1	DVT	Phoenix Deer Valley, AZ	7,258	826	116,759	6,682	241,742	370,034	373,267	98.7\%	378,061
2	APA	Centennial Airport, CO	42,325	40	103,482	6,392	153,848	332,111	306,087	90.0\%	340,249
3	TMB	Kendall-Tamiami Executive Airport, FL	33,739	216	125,243	3,589	116,211	278,027	278,998	98.9\%	282,066
4	LGB	Long Beach, CA	25,044	378	81,437	17,585	154,046	294,886	278,490	88.9\%	313,421
5	PRC	Ernest A. Love Field, AZ	2,586	34	68,413	763	178,125	253,211	249,921	98.3\%	254,342
6	SEE	Gillespie Field, CA	15,007	249	69,028	5,567	141,797	226,876	231,648	99.3\%	233,257
7	CHD	Chandler Municipal Airport, AZ	4,482	135	73,378	2,282	141,586	221,473	221,863	98.5\%	225,244
8	GFK	Grand Forks Int'l, ND	6,688	8	6,222	505	204,564	318,506	217,987	68.3\%	319,178
9	VNY	Van Nuys, CA	37,376	1139	92,486	20,215	66,130	213,566	217,346	91.7\%	237,102
10	FFZ	Falcon Field, AZ	3,407	98	44,890	7,772	152,579	263,118	208,746	76.4\%	273,395
11	IWA	Phoenix-Mesa Gateway Airport, AZ	15,190	177	42,032	5,280	142,389	250,778	205,068	79.3\%	258,492
12	MYF	Montgomery Field Airport, CA	24,177	105	73,252	8,087	98,680	200,668	204,301	97.5\%	209,453
13	FRG	Republic Airport, NY	14,259	162	84,176	5,065	100,569	209,978	204,231	91.6\%	222,887
14	VRB	Vero Beach Municipal Airport, FL	20,841	164	76,603	2,717	102,807	204,611	203,132	97.9\%	207,583
15	SNA	John Wayne-Orange County, CA	33,100	676	66,875	9,857	91,184	300,354	201,692	64.4\%	313,085
16	DAB	Daytona Beach, FL	21,835	359	30,210	3,226	143,608	307,333	199,238	63.8\%	312,292
17	HIO	Portland-Hillsboro Airport, OR	13,668	120	64,110	3,426	115,332	197,763	196,656	97.7\%	201,382
18	HWO	North Perry Airport, FL	2,994	2594	59,188	10,132	113,985	176,306	188,893	98.9\%	190,955
19	SFB	Sanford-Orlando, FL	9,595	25	15,565	945	159,684	289,312	185,814	64.0\%	290,385
20	CNO	Chino, CA	15,343	803	54,070	8,422	106,947	177,577	185,585	99.2\%	187,100
21	RVS	Richard Lloyd Jones, OK	14,529	46	54,719	953	110,251	182,050	180,498	98.0\%	184,238
22	PMP	Pompano Beach Airpark, FL	5,428	10397	46,763	20,220	92,998	145,660	175,806	94.2\%	186,534
23	FXE	Fort Lauderdale Executive Airport, FL	36,651	466	75,920	13,047	34,144	160,295	160,228	91.9\%	174,391
24	RHV	Reid-Hillview, CA	2,008	3865	53,646	4,796	95,541	151,701	159,856	82.1\%	194,744
25	PAO	Palo Alto Airport, CA	5,611	1839	51,040	4,782	95,702	153,238	158,974	95.5\%	166,400
26	FPR	Saint Lucie County Int'I Airport, FL	21,833	287	52,009	2,365	79,286	155,028	155,780	98.6\%	157,988
27	SDL	Scottsdale Airport, AZ	32,070	182	51,880	7,587	58,270	158,295	149,989	89.9\%	166,776
28	CRQ	McClellan-Palomar Airport, CA	38,458	152	48,687	5,425	56,363	153,016	149,085	92.4\%	161,266
29	PDK	DeKalb-Peachtree Airport, GA	47,282	514	50,827	11,284	38,913	158,525	148,820	85.1\%	174,824
30	FTW	Fort Worth Meacham Interntional Airport, TX	24,953	1077	38,950	8,552	74,009	148,316	147,541	90.8\%	162,536
31	FIN	Flagler County Airport, FL	4,722	0	34,831	363	105,357	146,830	145,273	98.6\%	147,323
32	VGT	North Las Vegas Airport, NV	10,002	408	47,033	2,703	82,996	159,430	143,142	86.6\%	165,236
33	BFI	Boeing Field, King County Airport, WA	28,112	1560	55,441	13,745	43,992	169,641	142,850	57.4\%	249,075
34	CMA	Camarillo Airport, CA	13,605	5111	55,575	6,174	62,343	135,517	142,808	94.4\%	151,281
35	DTO	Denton Municipal Airport, TX	9,644	10	51,870	2,282	73,279	136,656	137,085	98.6\%	139,014
36	BJC	Rocky Mountain Metropolitan Airport, CO	13,841	470	51,048	3,738	67,619	141,716	136,716	93.4\%	146,384
37	EVB	New Smyrna Beach Municipal, FL	7,569	137	39,731	3,060	82,808	132,000	133,305	98.5\%	135,283
38	SGJ	North East Florida Regional Airport, FL	12,372	182	48,019	1,209	69,215	141,398	130,997	91.2\%	143,610
39	TOA	Zamperini Field Airport, CA	7,099	171	52,990	11,935	54,366	115,188	126,561	98.9\%	127,962
40	RNT	Renton Municipal Airport, WA	4,005	51	43,219	4,477	73,547	123,013	125,299	97.9\%	127,998
41	HWD	Hayward Executive Airport, CA	8,199	7228	36,537	10,403	62,506	108,701	124,873	70.0\%	178,337
42	OPF	Opa-Locka Executive Airport, FL	35,871	2	38,063	10,958	36,585	130,070	121,479	86.0\%	141,195
43	MRI	Merrill Field Airport, AK	1,297	80	56,345	3,448	59,741	130,423	120,911	87.9\%	137,613
44	TTD	Portland-Troutdale Airport, OR	1,370	12	31,288	2,190	86,047	119,110	120,907	98.9\%	122,310
45	TKI	McKinney National Airport, TX	9,196	1	30,028	2,623	78,657	120,470	120,505	97.5\%	123,533
46	LAL	Lakeland Linder Regional Airport, FL	15,158	1020	45,380	6,486	52,411	115,571	120,455	97.8\%	123,155
47	CRG	Jacksonville Executive Airport at Craig, FL	21,549	228	32,508	1,786	63,288	130,822	119,359	83.2\%	143,376
48	LVK	Livermore Municipal Airport, CA	7,718	22	45,400	3,386	62,798	118,099	119,324	98.2\%	121,531
49	PTK	Oakland Country International Airport, MI	26,111	357	40,180	2,653	48,813	125,132	118,114	92.1\%	128,282
50	CCR	Bucchanan Field Airport, CA	7,631	33	37,661	2,499	69,601	119,609	117,425	95.9\%	122,435

General aviation operations are defined by the FAA based on the traffic operations counted in the OPSNET.

Total operations include general aviation operations as well as commercial and military operations.
GA does not include FAR Part 135 on-demand operations in this table.

Year	VOR VORTAC	Non-Directional Beacons	Air Route Traffic Control Centers	Air Route Traffic Control Towers	Flight Service Stations	International Flight Service Stations	Instrument Landing Systems	WAAS-Enabled Procedures	Airport Surveillance Radar	ADS-B Radios (IOC)
1975	1,011	848	25	487	321	7	580	n/a	177	0
1976	1,020	920	25	488	321	7	640	n/a	175	0
1977	1,021	959	25	495	319	7	678	n/a	182	0
1978	1,020	988	25	494	319	6	698	n/a	185	0
1979	1,028	1,015	25	499	318	6	753	n/a	192	0
1980	1,037	1,055	25	502	317	6	796	n/a	192	0
1981	1,033	1,123	25	501	316	6	840	n/a	199	0
1982	1,029	1,143	25	492	316	6	884	n/a	197	0
1983	1,032	1,183	25	494	316	5	934	n/a	197	0
1984	1,035	1,211	25	497	310	5	955	n/a	197	0
1985	1,039	1,222	25	500	302	4	968	n/a	198	0
1986	1,043	1,239	25	686	293	3	977	n/a	312	0
1987	1,039	1,212	25	500	302	4	968	n/a	312	0
1988	1,043	1,239	25	686	293	3	977	n/a	311	0
1989	1,046	1,263	25	686	255	3	1,100	n/a	312	0
1990	1,045	1,271	25	686	235	3	1,120	n/a	311	0
1991	1,045	1,295	24	694	192	3	1,114	n/a	318	0
1992	1,044	1,314	24	691	179	3	1,177	n/a	312	0
1993	1,046	1,263	24	686	255	3	1,100	n/a	312	0
1994	1,045	1,271	24	686	235	3	1,120	n/a	311	0
1995	1,045	1,295	24	694	192	3	1,114	n/a	318	0
1996	1,044	1,314	24	691	179	3	1,177	n/a	312	0
1997	1,041	1,344	24	684	135	3	1,231	n/a	310	0
1998	1,039	1,348	24	683	128	3	1,238	n/a	307	0
1999	1,041	1,320	24	680	75	3	1,327	n/a	295	0
2000	993	1,199	25	663	75	3	1,370	n/a	297	0
2001	1,116	1,675	24	678	76	3	1,388	n/a	292	0
2002	n/a	n/a	21	n/a	76	3	n/a	n/a	n/a	0
2003	n/a	n/a	21	n/a	76	3	n/a	n/a	n/a	0
2004	1,119	1,685	21	688	76	3	1,473	n/a	227	0
2005	1,111	1,613	21	693	76	3	1,490	n/a	226	0
2006	n/a	n/a	21	494	76	n/a	n/a	n/a	n/a	0
2007	n/a	n/a	21	499	76	n/a	n/a	n/a	n/a	0
2008	n/a	n/a	21	503	4	n/a	n/a	n/a	n/a	n/a
2009	n/a	n/a	21	508	4	n/a	n/a	n/a	n/a	n/a
2010	n/a	n/a	21	508	4	n/a	n/a	n/a	n/a	202
2011	n/a	n/a	21	512	4	n/a	n/a	11,828	n/a	339
2012	n/a	n/a	22	514	4	n/a	n/a	12,876	n/a	440
2013	967	n/a	22	516	4	n/a	n/a	13,102	n/a	556
2014	967	n/a	22	516	4	n/a	n/a	13,554	230	634
2015	957	n/a	22	517	4	n/a	n/a	13,844	230	634
2016	957	n/a	22	517	4	n/a	n/a	14,245	230	634
The FAA stopped publishing the "Air Traffic Factbook" in 2008. GAMA is working to backfill missing data. Air Traffic Control data shows federal, non-federal, and military through 2005, while 2006 through 2011 are FAA and contract.				Honolulu control facility as well as San Juan and Guam CERAP not included in ARTCC data. ADS-B radios only list those that have reached Initial Operating Capability (IOC). The 2010 and 2012 figures are from November. Figures from other years are from December. WAAS-capable approach procedures include LNAV, LNAV/VNAV, LPV, LP procedures, and GPS stand-alone procedures, of which 3,767 are LPV in the 2016 data.					Source: FAA Air Traffic Organization	

7.5 Airports by Type (2001-2011)

Year	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
Total Civil Public Use Airports	5,294	5,286	5,286	5,288	5,270	5,233	5,221	5,202	5,178	5,175	5,172
Civil Public Use Part 139	635	633	628	599	575	604	565	560	559	551	547
Civil Public Use Non-Part 139	n/a	n/a	n/a	n/a	n/a	n/a	4,556	4,642	4,619	4,624	4,625
Civil Public Use Abandoned	26	16	19	10	14	27	18	16	18	14	20
Newly Established Public Use	n/a	n/a	n/a	n/a	n/a	n/a	9	3	5	16	6
Total Civil Private Use Airports	14,062	14,286	14,295	14,532	14,584	14,757	14,839	14,451	14,298	14,353	14,339
Civil Private Use Airports Abandoned	220	121	214	117	115	133	297	461	360	121	183
Newly Established Private Use	n/a	n/a	n/a	n/a	n/a	n/a	274	151	214	212	20
Military Airports	75	75	73	57	n/a	n/a	261	277	274	274	271
Total Airports by Type	19,356	19,572	19,581	19,820	19,854	19,983	20,341	19,930	19,750	19,802	19,782
Airports	n/a	n/a	n/a	n/a	n/a	n/a	13,822	13,589	13,494	13,473	13,450
Heliports	n/a	n/a	n/a	n/a	n/a	n/a	5,708	5,568	5,571	5,650	5,686
Seaplane Bases	n/a	n/a	n/a	n/a	n/a	n/a	527	503	497	496	497
Gliderports	n/a	n/a	n/a	n/a	n/a	n/a	35	35	35	35	35
Stolports	n/a	n/a	n/a	n/a	n/a	n/a	87	82	n/a	n/a	n/a
Balloon Ports	n/a	n/a	n/a	n/a	n/a	n/a	15	14	14	13	13
Ultralight Flightparks	n/a	n/a	n/a	n/a	n/a	n/a	147	139	139	135	131

Certificated airports service air carrier operations with
Source: FAA Administrator's Factbook

Safety and Accident Statistics

8.1 U.S. General Aviation Accidents, Fatal Accidents, and Fatalities (1985-2016)

	Year	Accidents		Accidents		Fatalities		Flight Hours	Rate	
		All	Excluded	Fatal	Excluded	Total	Aboard		All	Fatal
	1985	2,739	11	498	6	956	945	28,322,000	9.63	1.73
	1986	2,581	11	474	5	967	879	27,073,000	9.49	1.73
	1987	2,495	18	446	7	837	822	26,972,000	9.18	1.62
	1988	2,388	13	460	4	797	792	27,446,000	8.65	1.66
	1989	2,242	17	432	8	769	766	27,920,000	7.97	1.52
	1990	2,242	4	444	1	770	765	28,510,000	7.85	1.55
	1991	2,197	8	439	5	800	786	27,678,000	7.91	1.57
	1992	2,110	2	450	1	866	864	24,780,000	8.51	1.81
	1993	2,064	5	401	4	744	740	22,796,000	9.03	1.74
	1994	2,021	3	404	2	730	723	22,235,000	9.08	1.81
	1995	2,056	10	412	6	734	727	24,906,000	8.21	1.63
	1996	1,908	4	361	0	636	619	24,881,000	7.65	1.45
	1997	1,840	5	350	2	631	625	25,591,000	7.17	1.36
능	1998	1,902	6	364	4	624	618	25,518,000	7.43	1.41
$\frac{\stackrel{8}{7}}{\frac{1}{3}}$	1999	1,905	3	340	1	621	615	29,246,000	6.50	1.16
\bigcirc	2000	1,837	7	345	7	596	585	27,838,000	6.57	1.21
$\underset{N}{\stackrel{i}{4}}$	2001	1,727	3	325	1	562	558	25,431,000	6.78	1.27
$\begin{aligned} & \text { O } \\ & \underline{\text { I }} \end{aligned}$	2002	1,716	7	345	6	581	575	25,545,000	6.69	1.33
$\stackrel{-}{\text { - }}$	2003	1,741	4	352	3	633	630	25,998,000	6.68	1.34
$\underset{N}{\circ}$	2004	1,619	3	314	0	559	559	24,888,000	6.49	1.26
ヵ	2005	1,671	2	321	1	563	558	23,168,000	7.20	1.38
O	2006	1,523	2	308	1	706	547	23,963,000	6.35	1.28
$\stackrel{0}{70}$	2007	1,654	2	288	2	496	491	23,819,000	6.94	1.20
O	2008	1,568	2	277	0	496	487	22,805,000	6.87	1.21
.	2009	1,480	3	275	0	479	470	20,862,000	7.08	1.32
$\frac{\overline{\#}}{+}$	2010	1,440	3	271	2	458	455	21,688,000	6.63	1.24
$\stackrel{\sim}{*}$	2011	1,471	2	270	1	458	447	21,488,000	6.84	1.24
-	2012	1,473	1	273	1	438	438	20,881,000	7.04	1.30
. $\frac{0}{7}$	2013	1,224	3	222	3	391	386	19,492,000	6.26	1.12
$\frac{\overline{4}}{\pi}$	2014	1,223	0	257	0	424	414	19,617,000	6.18	1.29
$\frac{\mathbb{T}}{\mathbb{D}}$	2015	1,209	5	229	4	376	373	20,576,000	5.85	1.09
$$	2016P	1,123	n/a	191	n/a	n/a	n/a	n/a	n/a	n / a
$\frac{0}{\circ}$	eliminary Aviatio ed "Acci	by NT "Fatalit	operations cide/sabotag	91, Pa len/una	125, Part 1 events, which	art 137 included	ose of accid	tistics.	Source	, and

FIGURE 8.1 Accident Rates in U.S. General Aviation (1985-2015)

$\begin{array}{lll}1985 & 1986 & 1987 & 1988 & 1989 & 1990 & 1991 & 1992 & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 & 2009 & 2010 & 2011 & 2012 & 2013 & 2014 & 2015\end{array}$
Source: NTSB, FAA, and GAMA

8.2 U.S. On-Demand FAR Part 135 Accidents, Fatal Accidents, and Fatalities (1990-2016)

Year	Accidents		Accidents		Fatalities		Flight Hours	Rate	
	All	Excluded	Fatal	Excluded	Total	Aboard		All	Fatal
1990	107	0	29	0	51	49	2,249,000	4.76	1.29
1991	88	0	28	0	78	74	2,241,000	3.93	1.25
1992	76	0	24	0	68	65	2,844,000	2.67	0.84
1993	69	0	19	0	42	42	2,324,000	2.97	0.82
1994	85	0	26	0	63	62	2,465,000	3.45	1.05
1995	75	0	24	0	52	52	2,486,000	3.02	0.97
1996	90	0	29	0	63	63	3,220,000	2.80	0.90
1997	82	0	15	0	39	39	3,098,000	2.65	0.48
1998	77	0	17	0	45	41	3,802,000	2.03	0.45
1999	74	0	12	0	38	38	3,204,000	2.31	0.37
2000	80	0	22	0	71	68	3,930,000	2.04	0.56
2001	72	0	18	0	60	59	2,997,000	2.40	0.60
2002	60	0	18	0	35	35	2,911,000	2.06	0.62
2003	73	0	18	0	42	40	2,927,000	2.49	0.61
2004	66	0	23	0	64	63	3,238,000	2.04	0.71
2005	65	0	11	0	18	16	3,815,000	1.70	0.29
2006	52	0	10	0	16	16	3,742,000	1.39	0.27
2007	61	0	14	0	43	43	4,033,000	1.51	0.35
2008	58	0	20	0	69	69	3,205,000	1.81	0.62
2009	47	0	2	0	17	14	2,901,000	1.62	0.07
2010	30	0	6	0	17	17	3,113,000	0.96	0.19
2011	50	0	16	0	41	41	3,082,000	1.62	0.52
2012	36	0	8	0	12	12	3,522,000	1.02	0.23
2013	44	0	10	0	25	25	3,384,000	1.30	0.30
2014	35	0	8	0	20	20	3,654,000	0.96	0.23
2015	38	0	7	0	27	27	3,566,000	1.07	0.20
2016P	22	n/a	5	n/a	n/a	n/a	n / a	n/a	n/a
$\mathrm{P}=$ Preliminary Excluded "Accidents" and "Fatalities" are suicide/sabotage and stolen/unauthorized events, which are not included in rates. In 2002, FAA changed its estimate of air taxi activity. The revision was retroactively applied to the years 1992 to present. In 2003, the FAA again revised flight activity estimates for 1999 to 2002.					U.S. air carriers operating under 14 CFR Part 135 were previously referred to as Scheduled and Nonscheduled Services. Current tables now refer to these same air carriers as Commuter Operations and On-Demand Operations, respectively, in order to be consisent with definitions in 14 CFR 119.3 and terminology used in 14 CFR 135.1. On-Demand Part 135 operations encompass charters, air taxis, air tours, or medical services (when a patient is on board).				

FIGURE 8.2 Accident Rates in U.S. On-Demand FAR Part 135 Operations (1990-2015)

8.3 European Union General Aviation and Aerial Work Accident Data (2006-2013)

Year	Aircraft with Mass Below 2,250 Kg				Aircraft with Mass Above 2,250 Kg				All Aircraft Accidents	
	Accidents		Fatalities		Accidents		Fatalities		Accidents	
	Total	Fatal	Aboard	Ground	Total	Fatal	Aboard	Ground	Total	Fatal
2006	1,121	151	231	3	36	10	29	-	1,157	161
2007	1,157	142	238	5	30	10	18	1	1,187	152
2008	1,145	140	216	2	32	10	23	1	1,177	150
2009	1,234	163	253	4	19	9	18	-	1,253	172
2010	1,047	129	189	1	31	6	14	-	1,078	135
2011	1,109	169	253	1	34	12	29	-	1,143	181
2012	918	133	226	1	10	2	2	1	995	148
2013	948	128	202	-	15	3	7	-	1,006	139

The European Aviation Safety Agency (EASA) includes aircraft registered in Member States that are balloons, aeroplanes, gliders, gyroplanes, helicopters,
Source: EASA Annual Safety Review microlights, motor gliders, and other aircraft, among general aviation accidents that occurred in general aviation operations and while conducting aerial work. This data does not include general aviation aeroplanes conducting Commercial Air Transport operations.
Data from 2006-2008 does not include Italy, Liechtenstein, Luxembourg, and Slovenia.
Data after 2012 includes aerial work accidents in the "All Aircraft" total data only and is not part of the other columns.
General aviation accident data is not available for years after 2013 at this time.

8.4 European Union General Aviation and Aerial Work Accidents (2014)

Year	General Aviation												Commercial								All Aircraft Accidents		
	Aeroplane		Rotorcraft		Glider		Microlight		Balloon				Aerial Work				Commercial Air Transport						
			Aero	lane			Roto	craft			Aer	lane	Roto	craft									
	Total	Fatal			Total	Fatal			Total	Fatal			Total	Fatal	Fatalities								
2014	421	53	73	9	195	18	204	30	11	0	3	1	24	5	11	2	n/a	n/a	6	1	948	119	197

EASA has changed how the agency publishes safety statistics. Table 8.4 shows the new format for 2014 while Table 8.3 shows the historical data for 2006-2013.
Source: EASA Annual Safety Review
The Commercial Air Transport Aeroplane data provided by EASA does not differentiate between fixed-wing aeroplane operations using general aviation versus
larger aircraft and shown as " n / a " in the table.

2017 Executive Committee

Simon Caldecott PIPER AIRCRAFT, INC. GAMA Chairman

David Coleal bOMBARDIER BUSINESS AIRCRAFT

Environment
Committee Chairman

Rhett Ross CONTINENTAL MOTORS, INC.
Policy \& Legal Issues Committee Chairman

Phil Straub GARMIN INTERNATIONAL
GAMA Vice Chairman

Aaron Hilkemann DUNCAN AVIATION Immediate Past Chairman

John Uczekaj ASPEN AVIONICS

Flight Operations Policy Committee Chairman

Mark Burns GULFSTREAM AEROSPACE CORPORATION

Airworthiness \&
Maintenance Policy Committee Chairman

David Paddock JET AVIATION

Communications Committee Chairman

Chuck Wiplinger WIPAIRE, INC.

Technical Policy
Committee Chairman

Nicolas Chabbert DAHER
Safety \& Accident Investigation Committee Chairman

Simon Pryce bBA AVIATION

Global Markets Committee Chairman

Jim Ziegler GREENWICH AEROGROUP
Security Issues
Committee Chairman

GAMA Staff

Pete Bunce
President \& CEO

Jahan Ahmad Director, Accounting

Jonathan Archer Director, Engineering \&

Gregory J. Bowles Vice President, Global Innovation \& Policy

Victoria Collins Executive Assistant

Brian Davey
Director, European \& International Affairs

Walter L. Desrosier Vice President, Engineering \& Maintenance

Jens C. Hennig Vice President, Operations

Joe Sambiase Director, Maintenance \& Airworthiness

Paul H. Feldman
Vice President,
Government Affairs

Bree Foran
Director, Meetings \&
Membership Services

Kyle Martin
Director, European
Regulatory Affairs

Frank Taylor
Staff Assistant

GAMA Member Companies

18 Avidyne Corporation www.avidyne.com

19 B/E Aerospace, Inc. www.beaerospace.com
20 Bell Helicopter www.bellhelicopter.com
21 Blackhawk Modifications, Inc. www.blackhawk.aero

22 Bloomington Corporation www.bloomingtoncorp.com

23 Boeing Business Jets www.boeing.com/commercial/bbj

24 CAMP Systems International www.campsystems.com
25 Cirrus Aircraft www.cirrusaircraft.com
Canada
1 Bombardier Business Aircraft www.aerospace.bombardier.com
2 CAE SimuFlite www.cae.com

3 Celestica www.celestica.com
4 Esterline CMC Electronics www.esterline.com
5 Pratt \& Whitney Canada www.pwc.ca
6 Thales Canada, Inc. www.thalesgroup.com/canada

United States

7 Aero Electric Aircraft Corp. (AEAC)
www.sunflyer.com
8 Aero-Mach Labs
www.aeromach.com
9 Airbus Group-E-Fan
www.northamerica.airbus-group.com
10 Air Tractor, Inc.
www.airtractor.com
11 Appareo www.appareo.com
12 Ascent Vision Technologies, LLC www.ascentvision.com
13 Aspen Avionics
www.aspenavionics.com
14 Astronautics Corp. of America www.astronautics.com

15 ATP www.atp.com
16 Avfuel Corporation www.avfuel.com
17 Aviall, Inc. www.aviall.com

60 ONE Aviation
www.oneaviation.aero
61 Piper Aircraft, Inc. www.piper.com

62 PPG Aerospace www.ppg.com

63 Quest Aircraft Company www.questaircraft.com
64 Redbird Flight Simulations, Inc. www.redbirdflight.com
65 Rockwell Collins, Inc. www.rockwellcollins.com

66 Sabreliner Aviation www.sabreliner.com

67 Safe Flight Instrument Corporation www.safeflight.com

68 SimCom International www.simulator.com

69 SmartSky Networks, LLC www.smartskynetworks.com
70 StandardAero
www.standardaero.com
71 Terrafugia
www.terrafugia.com
72 Textron Aviation www.txtav.com

73 Thrush Aircraft, Inc. www.thrushaircraft.com
74 Triumph Group, Inc. www.triumphgroup.com
75 TRU Simulation + Training www.trusimulation.com

76 Uber Technologies www.uber.com/elevate

77 Ultra-ICE Corporation www.ultra-ice.com

78 Universal Avionics Systems Corp. www.uasc.com
79 UTC Aerospace Systems www.utcaerospacesystems.com
80 Williams International www.williams-int.com

81 Wipaire, Inc. www.wipaire.com

82 Woodward, Inc. www.woodward.com
83 World Fuel Services
www.wfscorp.com
84 Yingling Aviation
www.yinglingaviation.com
85 Zee Aero
www.zee.aero

SOUTH AMERICA

Brazil
1 Embraer www.embraer.com

EUROPE

Austria
1 Bosch General Aviation Technology GmbH
www.bosch-aviation.com
2 BRP Powertrain-Rotax www.rotax.com

3 Diamond Aircraft Industries www.diamondair.com

Belgium

4 Luxaviation Group
www.luxaviation.com

France

5 Airbus Helicopters, Inc. www.airbushelicoptersinc.com
6 DAHER
www.tbm.aero
7 Dassault Falcon
www.dassaultfalcon.com
8 SMA
www.smaengines.com

Germany

9 Flight Design GmbH
www.flightdesign.com
10 Siemens AG
www.siemens.com
Italy
11 Piaggio Aerospace
www.piaggioaerospace.it

Poland

12 Aero AT

www.at-3.com
Slovenia
13 Pipistrel
www.pipistrel.si

Switzerland

14 Jet Aviation
www.jetaviation.com
15 Pilatus Aircraft, Ltd.
www.pilatus-aircraft.com
United Kingdom
16 BBA Aviation
www.bbaaviation.com
17 Rolls-Royce

www.avic.com
Israel
2 EViation Ltd.
www.eviation.co

AUSTRALIA

1 Mahindra Aerospace
www.mahindraaerospace.com

General Aviation

Manufacturers
Association
U.S. HEADQUARTERS

1400 K Street NW,
Suite 801
Washington, DC 20005
+1 202-393-1500

EUROPEAN OFFICE

Rue de la Loi 67/3
Brussels 1040, Belgium
+32 25503900
www.GAMA.aero

[^0]: An aircraft is considered manufactured in Europe when produced under an EASA production approval. EASA rules

[^1]: Source: Croatia Civil Aviation Authority http://www.ccaa.hr/ and GAMA Analysis

[^2]: Source: Luxembourg CAA (Direction De L'Aviation Civile), www.dac.public.lu

[^3]: Source: Spanish State Aviation Safety Agency (Agencia Estatal de Seguridad Aérea), www.seguridadaerea.gob.es

[^4]: SLMG $=$ Self-Launching Motor Glider

[^5]: The turbojet category includes air carrier data．The 2013 data included 202 business jets．
 Source：Civil Aviation Adminstration of China（中国民用航空局），www．caac．gov．cn

[^6]: 2007 data is not available from the South African Aircraft Registry.

[^7]: Source: South African Civil Aviation Authority, www.caa.co.za, and Aircraft Registry, www.avdex.co.za

