General Aviation Manufacturers Association

2017 ANNUAL REPORT

General Aviation:

- Includes over 446,000 general aviation aircraft flying worldwide today, ranging from two-seat training aircraft and utility helicopters to intercontinental business jets, of which over 211,000 aircraft are based in the United States and over 136,000 aircraft are based in Europe.
- Supports $\$ 219$ billion in total economic output and 1.1 million total jobs in the United States.
- Flies over 24.8 million flight hours, of which twothirds are for business purposes, in the U.S.
- Flies to more than 5,000 U.S. public airports, while scheduled airlines serve less than 400 airports. The European general aviation fleet can access over 4,200 airports.
- Is the primary training ground for most commercial airline pilots.
 related services. GAMA's members also operate repair stations, fixed-based operations, pilot and maintenance training facilities, and manage fleets of aircraft. For more information, visit GAMA's website at www.GAMA.aero and look for us on Facebook, Twitter, Instagram, Linkedln, and YouTube.

Welcome from GAMA's Chairman

Singe its inception in 1970, GAMA has been the only trade association in the world to provide quarterly and annual updates on the health of the global business and general aviation industry. As GAMA's Chairman this year, I'm proud to present to you our annual report, which provides a look at how the industry performed in 2017, a review of the most exciting developments that took place in the legislative, regulatory and policy arenas last year as well as relevant industry data for the United States, Europe, and several other regions.

In the next few pages, you'll find highlights of GAMA's activities in 2017. It's clear from this review that GAMA works tirelessly every day to advance the priorities of its member companies, and ensure global leaders, the public and the press understand the importance and value of our industry. As you'll read, our work resulted in aviation agencies and policymakers around the world taking steps to streamline certification validations and safety recognitions, with more planned for next year. We also successfully fought efforts in the U.S. Congress to privatize the nation's air traffic control system, while continuing to push for meaningful certification and regulatory reform, and saw revisions to the EASA basic regulation adopted, providing a scalable framework for general aviation. Additionally, we added a dozen new members, including several more associate members, which represent the burgeoning segment of the general aviation market and its evolution towards simplified operations. These are just a few examples of the industry advancements GAMA's work contributed to in the past year.

Looking ahead, this year GAMA will continue to be the premier advocate for general aviation manufacturers, their suppliers, and those who maintain, repair and overhaul general aviation aircraft around the world. Guided by our organizational mission and vision,

listed below, we will also continue to be a global resource for industry data, utilizing our redesigned website that houses important statistics such as the information in this report, government resources, career information for the next generation of general aviation leaders and more.

As a leader in the general aviation manufacturing industry and a member of the aviation community for over 20 years, I see the value of my GAMA
membership every day, and this report reflects that. I'm so proud of GAMA's accomplishments in 2017 and enthusiastic about what lies ahead in 2018. Thank you for your support.

Best,
Philo efrain

Phil Straub

Executive Vice President and Managing Director, Garmin Aviation

GAMA Mission and Vision

MISSION

The General Aviation Manufacturers Association (GAMA) exists to foster and advance the general welfare, safety, interests, and activities of the global business and general aviation industry. This includes promoting a better understanding of general aviation manufacturing, maintenance, repair, and overhaul and the important role these industry segments play in economic growth and opportunity, and in serving the critical transportation needs of communities, companies, and individuals worldwide.

VISION

Our vision is to be recognized as the most effective trade association in business and general aviation, aerospace manufacturing, and in the maintenance, repair, and overhaul domain through:

- Enhancing safety through innovation and the promotion of quality training
- Facilitating improvements in certification, audit, and regulatory processes
- Fostering sustainable general and business aviation growth
- Promoting the economic impact and societal benefits of general and business aviation
- Achieving organizational excellence

GAMA Celebrates Long-Awaited Acceptance of SingleEngine Commercial Aeroplane Operations in Europe

In March, GAMA welcomed the European Union (EU)'s adopted rules for Commercial Air Transport (CAT) operations using Single-Engine Turbine aeroplanes at night or in Instrument Meteorological Conditions (SET-IMC) in Europe.

Marking the end of a 20-year effort by industry and regulators, the publication of these rules opens new markets and stands to improve connectivity across the continent. Europe is now aligned with the International Civil Aviation Organization's (ICAO) standards for CAT operations.

Work on the regulatory framework for single-engine commercial operations began in the early 1990s. Common around the world, such operations are based on ICAO standards issued in 2005. GAMA, and several of the association's members, participated in a rulemaking group created by EASA in 2012 to help develop the agency's regulatory framework.
"The EU's acceptance of CAT operations has been a long-awaited moment for general aviation," GAMA President and CEO Pete Bunce said. "We are very pleased to see Europe joining other regions in permitting this important form of transport."

The new regulation is based on rigorous safety analysis, and contains all the necessary safeguards to facilitate this form of passenger transport. It will greatly facilitate overnight cargo delivery and help provide connectivity to Europe's most remote regions.
"We applaud the leadership shown by the European Aviation Safety Agency (EASA) in guiding this important safety framework forward, along with many dedicated individuals who helped forge this rule over many years," continued Bunce. "It will be a welcome development for those underserved by commercial routes to date."

> ICAO's final approval today of aviation's first CO2 emission standard for airplanes is a milestone that enshrines aviation manufacturers' commitment to mitigate our industry's impact on climate change.

THE FAA AND INDUSTRY GUIDE TO

Along with alternative fuels, the CO 2 standard forms part of the technology pillar of climate action by the global aviation industry. The other pillars are infrastructure improvements (air traffic control modernization), operational efficiencies, and market-based measures.

GAMA Announces FAA and Industry Update to Product Certification Guide

In May, GAMA, along with the Aircraft Electronics Association (AEA), Aerospace Industries Association (AIA) and the United States (U.S.) Federal Aviation Administration (FAA), announced an updated third edition of The FAA and Industry Guide to Product Certification. The last version of the guide was published in 2004.

A group comprised of representatives from 12 organizations worked over 18 months to improve the guide and produce the third edition. The organizations are: AEA, AIA, ALOFT AeroArchitects, Bell Helicopter, FAA, GAMA, Garmin, GE Aviation, Gulfstream Aerospace, Honeywell Aerospace, Textron Aviation and The Boeing Company. AEA, AIA, GAMA and FAA sponsor the guide.

The updated guide will help institutionalize best practices and a new operating norm for FAA, companies

In May, GAMA joined the industry and FAA in announcing an updated third edition of The FAA and Industry Guide to Product Certification. The last version of the guide was published in 2004.
and applicants that will prove to be foundational in reaching the next level of safety and certification process effectiveness and efficiency. It incorporates changes based on lessons learned and the most recently published FAA policy guidance. The guide also establishes principles and guidance for how an applicant and the FAA can transition to a state where there is progressively less direct involvement of the FAA in detailed compliance activities, increasing the efficiency of the process while maintaining the same high-level of safety.

There have been significant changes in type certification over the last 10-to-15

GAMA's Membership Continues Growing

Throughout the course of the year, GAMA proudly added several new member companies and associate member companies. Full member companies include CAMP Systems International, CiES, FlightAware, Meiya Group Global, Pipistrel, Siemens AG, Tamarack Aerospace Group and Unitech Aerospace.

New associate member companies include Ascent Vision Technologies, Empirical Systems Aerospace, Inc., Piasecki Aircraft, SmartSky Networks, Lilium and Uber. GAMA created the associate member category in 2015, to facilitate coordination of the associate members' technical expertise and GAMA's policy experience to enable the development, growth and airworthiness certification worldwide of hybrid and electric propulsion technology to benefit general aviation.

We're proud to work with the FAA and industry to update this guide, and help implement these improvements to ensure the certification process becomes more efficient and consistent, while keeping safety as the number one priority.
years that improve the efficiency and effectiveness of certification and design approval processes and enhance product safety. The revised guide addresses the impact of those changes and assists the stakeholders in taking full advantage of the benefits they offer.
"Clarifying the roles and responsibilities of industry and FAA oversight offices and facilitating a shift to a systems approach to product certification and safety oversight was a recommendation of the FAA Aircraft Certification Process Review and Reform report to Congress and the Part 21/Safety Management Systems Aviation Rulemaking Committee," said GAMA President and CEO Pete Bunce. "We're proud to work with the FAA and industry to update this guide, and help implement these improvements to ensure the certification process becomes more efficient and consistent, while keeping safety as the number one priority."

The revised guide introduces some significant changes to the Partnership For Safety Plan (PSP), a written agreement to define a working relationship between an applicant for a product certification or approval and the applicable organizations of the FAA. The PSP will now provide high-level agreements on how the FAA and applicant will conduct business, instead of providing specific details on how the parties will work together on specific issues, creating a more efficient, more consistent process.

GAMA Hosts the Fifth Annual Aviation Design Challenge

2017 marked the fifth annual GAMA Aviation Design Challenge, which helps promote U.S. high school students' knowledge of science, technology, engineering and mathematics (STEM) skills through aviation. Over the course of the winter and spring, students in 93 high schools spanning 31 states and Washington, DC, learned the basics of aerospace engineering and aviation flight using Fly to Learn curriculum and software powered by X-Plane. They then applied what they learned to modify a Cessna 172SP virtual airplane, using simulator software, and took part in a virtual fly-off.

In May, GAMA judges declared Olney High School, located in Olney, Texas, the winning team. Olney, Texas, is also home to GAMA member company Air Tractor. When Air Tractor President and GAMA Board Member Jim Hirsch heard that the winning team was based in his company's hometown, he went to the high school and personally delivered the good news to the team and their teacher. One month later, students Amber McCutcheon, Kodee Scott, Michael Gomez and Bryant Castro, along with their teacher Sabrina Laurent, made the trip to Arlington, Washington to claim the prize: experiencing general aviation manufacturing firsthand.
"Over the past five years, I've watched talented and enthusiastic young students

develop their skills and increase their confidence in just two weeks as they build an airplane," said GAMA President and CEO Pete Bunce. "Not only do they learn how to build a plane, but they also learn valuable life skills in public-speaking, teamwork, and critical thinking, as well as about general aviation manufacturing professions they may not have otherwise known they could pursue. This is all made possible by our tremendous sponsors, who I cannot thank enough for their support.

From June 20 to July 1, the students worked side-by-side with staff from Glasair Aviation and GAMA, along with the builder Ken Baur, and his son, Dennis, to help build a Glasair Sportsman. Starting at 7 a.m. each day, their tasks included bucking rivets, fabricating metal and composite brackets, running control cables, sanding the airframe, fabricating and attaching fuel lines, mounting gear and attaching the propeller. Before the students left, they saw the airplane taxi for the first time. The team was also fortunate enough during their twoweek experience in Arlington to have two of the sponsoring GAMA member companies, Click Bond Inc., and Siemens, send members of their executive teams and staff to the build to see the

students in action and talk to them about aerospace manufacturing.

The Aviation Design Challenge has a

 great track record of inspiring young people to get involved in aviation or enter the aviation field-regardless of whether the team they were on won. The 2017 winning team was the first ever to include two girls on it, one of whom has gone on to study pre-engineering at South Plains College in Lubbock, Texas, with plans to transfer to Texas Tech University to study architecture and engineering. One of the students from a 2017 competing team based in Orange, Florida, is now attending Embry Riddle Aeronautical University. He plans to join the Army and become a helicopter pilot. Sophomores on the 2017 competing team from Dunlap High School in Illinois were so excited about aviation after competing in the Aviation Design Challenge that they started an aviation club at their school. The club now has over 35 members who have reached out to community groups and formed partnerships for activities and field trips to increase student awareness of opportunities in the aviation field.GAMA thanks the following companies for their generous sponsorship in making the 2017 Aviation Design Challenge possible: BBA Aviation, Bose Corporation, Click Bond, Inc., Embraer, Garmin International, Glasair Aviation, Gulfstream Aerospace Corporation, Jeppesen, Jet Aviation, Jet Support Services International, Redbird Flight Simulations, Siemens, Textron Aviation and Wipaire, Inc.

ABOVE: Siemens Government Technologies President and CEO Barbara Humpton (center) with the students, their teacher (far right) and chaperone (far left) on day three of the build.
LEFT: Click Bond, Inc. sent a team of staff to visit the build.

Implementation of Global Rule Rewrites for Small Airplanes

One of the most significant rule rewrites the aviation regulatory agencies have ever performed was accomplished in the summer of 2017. The change will allow manufacturers and suppliers of products and technologies for small airplanes to develop and deliver innovative products to their customers more quickly and better leverage new technologies.

GAMA's efforts to reform the design criteria for general aviation airplanes recently came to fruition with the United States and Europe implementing foundational rule changes, in the Federal Aviation Administration (FAA) Part 23 and European Aviation Safety Agency (EASA) CS-23, respectively. Rather than having to comply with overly prescriptive design requirements, manufacturers can now more nimbly respond in a cost-effective manner through performance-based airworthiness safety rules and consensus standards for compliance. Because

these amended rules rely upon global certification standards, the overall result is the elimination of regulatory barriers and the acceptance of safe and modern airplanes and products worldwide.

Leading to the implementation date of the Part 23 rule rewrite, GAMA worked with the FAA to host a series of training sessions throughout the U.S., including one as part of the first-ever Uber Elevate Summit in April. The training sessions were widely attended, indicating the high-level of interest in what the amended rule means for the industry.
"GAMA is proud to continue championing this industry-changing rule through our training sessions," said GAMA President and CEO Pete Bunce. "They will help ensure the aviation community understands the full and immediate benefits of the new regulatory environment in August, and highlight the possibilities of what could be, if this same type of risk based international certification rulemaking approach is extended in the future to rotorcraft and transport category fixed wing aircraft."

Other leading aviation authorities are expected to follow suit and implement similar rules as Part 23 and CS-23, creating a truly global framework. GAMA also intends to support similar training sessions in Brazil, Canada, China and Europe in 2018.

ABOVE: EASA Certification Director Trevor Woods (right), joined Piper Aircraft's Simon Caldecott (left), Flight Design Germany's Matthias Betch (second from left) and Pipistrel's Ivo Boscarol (second from right) in announcing the CS-23 rule finalization. Caldecott is a former GAMA Chairman.
LEFT: U.S. FAA Administrator Michael Huerta (second from left) was joined by Hartzell Propeller's Joe Brown (left) Piper Aircraft's Simon Caldecott (second from right) and GE Aviation's Brad Mottier (right) in announcing the Part 23 rule finalization. Brown, Caldecott and Mottier are former GAMA Chairmen.

The Dawn of Hybrid and Electric Propulsion and Automation

2017 was a remarkable year for electric propulsion and increased automation in aviation. From the world's first allelectric airshow in Aero Friedrichshafen, Germany, to the birth of the electric vertical takeoff and landing industry, the emergence of this exciting revolution is brought about by the convergence of technology, regulatory flexibility and evolving public attitudes.

Rapid advances in microelectronics, software, battery capabilities and electric motors have awakened a new era of aircraft design. With the added degrees of freedom these technologies bring to aerospace design, these are truly exciting days to be in aerospace manufacturing!

Global regulatory reforms are allowing designers to begin certifying innovations which would have been mired in paperwork and process just a year ago. The U.S. Small Airplane Revitalization Act of 2013 and the implementation of the global aviation regulatory reforms like FAA Part 23 and EASA CS-23 now allow for electric propulsion, increased automation and a range of important new safety and technological innovations.

GAMA is proud to help lead the way in this growing area of the industry through the work of its Electric Propulsion and Innovation Committee (EPIC), assuring the hybrid and electric propulsion sector can shepherd innovation into

Continued on next page

2017 IN REVIEW

GAMA Vice President of Global Innovation and Policy Greg Bowles discusses the progress electric propulsion has made with aviation authorities around the globe at an EPIC meeting in Germany.
the traditional regulatory regimes governing the design and operation of aircraft. GAMA created the EPIC and an associate member category of the association in late 2015 to facilitate and represent the general aviation industry's hybrid and electric propulsion efforts as well as focus its ongoing safety improvement initiatives toward simplified aircraft operation. Committee membership has quickly grown, with over 50 companies now represented on it, which is collaboratively working toward establishing global standards for the industry. In 2017, the EPIC produced "GAMA Publication No. 16," a standard developed to aid manufacturers and operators in the common determination of hybrid and electric aircraft performance measurements.

As pilot numbers reach historic lows, public acceptance of increased automation on the road is expected to enable an entirely new generation of pilots who interface with aircraft that are more highly integrated and automated. In 2018, GAMA will continue working closely with the emerging industry and the global authorities to define new and exciting operational concepts that will increasingly democratize aviation.

Bilateral Aviation Safety Cooperation Makes Global Progress

Manufacturers around the globe seek ways to work with regulators to facilitate the introduction of new general aviation products and technologies to market. Notable efforts in 2017 include two new bilateral agreement implementation procedures among leading aviation regulators to increase safety, certification and validation cooperation, as well as the signing of an expanded bilateral safety agreement between transatlantic regulators.

GAMA Applauds Landmark Bilateral Aviation Safety Procedure Agreements

In September, the European Aviation Safety Agency (EASA) and its partner regulators, the U.S. Federal Aviation Administration (FAA) and Transport Canada Civil Aviation (TCCA), signed two new implementation procedure agreements forming the first major steps in the implementation of the Certification Management Team (CMT) Collaboration Strategy. The strategy, published in 2016, seeks to increase the level of safety cooperation among aviation safety regulators from Brazil, Canada the European Union and the United States.
"These are landmark agreements that significantly improve the acceptance of aviation products and approvals among our industry's key safety regulators," said GAMA President and CEO Pete Bunce. "The global general aviation manufacturing industry will benefit from these new provisions, which will reduce costs and delivery lead-times for aircraft exports in both directions across the Atlantic, while maintaining the highest levels of safety."

Revision 6 of the EASA-FAA Technical Implementation Procedures (TIP) for airworthiness and environmental certification is a significant milestone toward a risk-based approach to
reduce and further eliminate redundant authority involvement. It establishes a three-tiered approach for all projects based on mutual confidence and safety risk: reciprocal acceptance, including all Technical Standard Orders for equipment, maintenance repair data and alterations on import aircraft; streamlined validation for basic design approvals, including all piston engine and propeller type certificates; and introduction of a new validation work plan approach to manage projects that focus Validating Authority technical involvement only in appropriate areas defined up front, based on risk.

Revision 3 of the EASA-TCCA

Technical Implementation Procedures for airworthiness and environmental certification was also signed during the September CMT meeting. This agreement increases cooperation during certification and validation projects, and increases data sharing for in-service aircraft operations.

> These are landmark agreements that significantly improve the acceptance of aviation products and approvals among our industry's key safety regulators.

"GAMA looks forward to working with regulators to ensure a smooth and effective transition to the new processes during the six-month implementation period," said Bunce. "We also look forward to seeing these provisions enacted with other bilateral partners, such as Brazil's National Civil Aviation Agency."

GAMA Praises Progress in EU-US Bilateral Aviation Cooperation

At the end of the year, the top regulators from the European Union (EU) and the United States (U.S.) approved an update to their Bilateral Aviation Safety Agreement (BASA) to further promote and expand transatlantic cooperation and efficiency.
U.S. Federal Aviation Administration (FAA) Administrator Michael Huerta signed an amendment to the existing agreement, alongside Permanent Representative of Estonia to the EU Ambassador Kaja Tael, representing EU Member States, and European Commission Directorate General for Mobility and Transport (DG MOVE) Director General Henrik Hololei.

The amendment paves the way to expand cooperation to cover pilot licensing and Flight Simulator Training Devices in the future-two key areas where reciprocal acceptance will deliver pragmatic, safety-enhancing improvements for pilots and the industry. The next step in the process is to conclude negotiations on both the technical annexes, which have already been prepared.
"We welcome this long-awaited broadening of the EU-US partnership to enable collaboration on simulators and pilot licensing," said GAMA President and CEO Pete Bunce. "Both sides must now reach agreement and begin implementing these two annexes in the very near future so that the tangible benefits can be realized without delay."
"In particular, there is an urgent need to allow private pilots to easily transfer their existing skills between authorities without undue burden," Bunce continued. "Similarly, improving the availability of simulators to facilitate their expanded use will directly contribute to general aviation safety."

General Aviation Fleet Makes Strides Towards ADS-B Equipage

With air traffic control system modernization activities accelerating worldwide, it is vital that aircraft owners begin to make informed decisions about how to comply with emerging and existing regulatory mandates immediately by selecting the right equipment for their aircrafts' typical missions.

Automatic Dependent SurveillanceBroadcast (ADS-B) equipment, a linchpin of the FAA's NextGen air traffic modernization program, will allow pilots to communicate their aircraft's position using satellite-based technology, providing pilots more information about what's going on the airspace around them. Since the FAA announced in 2010 the ADS-B mandate deadline of Jan. 1, 2020, general aviation manufacturers have worked to design, develop, certify, and make available ADS-B products that enhance safety for operators at reasonable costs.

In September, GAMA marked the news that as of the first of the month, over 40,000 aircraft flying in the U.S. had been equipped with rule-compliant ADS-B equipment, a milestone in the progress of fleet equipage.
"By choosing to equip now, operators are investing in their safety and ensuring
they meet the 2020 deadline before installation lines grow long," said Bunce. "We are very pleased with the continuous growth in equipage, and manufacturers will continue working with the FAA and operators to facilitate equipage as the deadline approaches."

As 2017 came to a close, the FAA reported that nearly 50,000 U.S.registered aircraft were equipped with rule-compliant ADS-B. The FAA also reported that 12,482 aircraft owners took advantage of the \$500 ADS-B rebate the agency offered to singleengine piston airplane operators who equipped by September 2017. The object of the incentive program was to entice operators to equip earlier to avoid the risk of constrained maintenance and manufacturer capacity in 2018 and 2019.

Around the world, other operators face similar ADS-B equipage mandates. Australia's mandate went into effect in February 2017, whereas Europe's mandate, which extends to broader surveillance, involves a transponder mandate for certain aircraft to be compliant with Mode S Elementary or Mode S Enhanced by June 7, 2020. Canada is also considering establishing a requirement for ADS-B equipage.

GAMA and General Aviation Industry Oppose Air Traffic Control Privatization Attempts in the U.S.

GAMA, and the broader general aviation industry, strongly engaged in the fight against efforts to privatize the U.S. air traffic control system in 2017.

In March, the Trump Administration published its Fiscal Year 2018 Budget, which formally proposed shifting the air traffic control function of the U.S. Federal Aviation Administration (FAA) to an independent, non-governmental organization. In response, GAMA issued a press release citing concerns about this shift.
"Removing the U.S. air traffic control system from the FAA could create negative impacts for aviation safety, rural and small communities, national security, and air traffic control modernization as well as for other important regulatory reform efforts," the statement said The FAA air traffic control system is the safest, most efficient, largest, and most complex in the world. To a degree not found in other countries, the economic health and vitality of numerous businesses and communities, small and large, depend on the U.S. aviation system. We must not weaken this strong foundation."

Many of the challenges associated with this type of change were thoughtfully outlined by Members of Congress on

a bipartisan basis throughout the year, including one letter by U.S. Senators Jerry Moran (R-KS) and Amy Klobuchar (D-MN). Specifically, in January of 2017, the two suggested a dialogue with the new Administration among all stakeholders, including civil and defense users of the National Airspace System, to achieve national consensus on any potential changes to the U.S. air traffic control system.

In May, GAMA Hill Day attendees devoted a strong focus to sharing individual board members' perspective on the ramifications these reforms would have on general aviation manufacturers and the broader aviation marketplace. At the same time, Hill Day participants articulated how such a transition could impede air traffic modernization under the FAA's NextGen program and shared how this debate has delayed other important reforms sought by the broader aviation sector.

On the heels of GAMA's Hill Day, former GAMA Chairman and Hartzell Propeller President and Tailwind Technologies Chief Operating Officer Joe Brown testified before the U.S.

Joe Brown testifies before the House T\&l Committee in May.

During his testimony, Brown posed the question to the Committee: "Are the public interests better served if Congress gives our wealth and skies to a small group of special interests, operating outside of democratic oversight, so that they can serve their own ends?"

During GAMA's 2017 Hill Day, participants met with members of Congress to discuss key issues, like air traffic control privatization. From left to right: Mike Clayton of ULTRA-ICE, Doug May of Textron Aviation, Congressman Ron Estes (R-KS), Chuck Perkins of Aero-Mach Labs, Randy O'Boyle of ULTRA-ICE, Phil Straub of Garmin Aviation and current GAMA Chairman, and Steve Logue of Lycoming Engines.

House Transportation and Infrastructure Committee at a hearing focused on air traffic reform proposals. Brown provided the committee with a unique perspective as a private pilot, citizen and leader of a 100-year-old company with origins linked to the Wright Brothers.

In June, following its budget proposal, the Trump Administration released a set of principles for privatizing the U.S. air traffic control system. Rejecting these principles, GAMA issued a statement outlining concerns it had previously raised but also noted, "The U.S. Congress, working with stakeholders and FAA, has implemented equitable solutions to challenges like rural and small community service, fair access for all aviation users, environmental impacts of noise and traffic, infrastructure and funding mechanisms. The FAA has also managed the safe integration of new technologies into the National Airspace System because it is chartered to serve a broader public purpose. There is no guarantee that this new entity could run the safest, busiest and most complex airspace in the world, while simultaneously increasing the pace and impact of modernization and assuring the American people that it will, first and foremost, serve the public interest."

Later that month, the House
Transportation and Infrastructure Committee passed the " 21 st Century

Aviation Innovation, Reform, and Reauthorization Act," which included a title that would shift oversight of air traffic control from the FAA to a private entity. The same week, the U.S. Senate Commerce, Science, and Transportation Committee considered the "Federal Aviation Administration Reauthorization of 2017" that contained significant reforms to the FAA and its policies, but omitted efforts to privatize air traffic control. Though both the House and Senate bills passed out of committee, neither was debated on the floor of its respective body during 2017.

GAMA maintained its advocacy against air traffic control privatization during the summer and fall, utilizing public outreach and education, and grassroots advocacy. A significant moment in GAMA's public outreach came in July, when GAMA President and CEO Pete Bunce joined the leaders of the Aircraft Owners and Pilots Association (AOPA), Experimental Aviation Association (EAA), and the National Business Aviation Association (NBAA) at a town hall at EAA AirVenture Oshkosh, organized to educate the airshow attendees about the risks of privatizing the nation's air traffic control system.

During the event, Bunce stated, "We can work with Congress and the FAA to make improvements to our system and leverage the new air traffic control technology that has recently been deployed, but we do not support handing the system over to a small
board of private interests that will reduce access and harm investment in general aviation, and rural and small communities."

Throughout the year, these general aviation associations and others repeatedly raised concerns about air traffic privatization with Congress, sending 10 letters to Congress in total, with the number of groups signing on to the letters starting at 16 on the first, and over 200 signing on to the last sent in 2017.

When September arrived, GAMA, along with AOPA, EAA, the Helicopter Association International (HAl), the National Air Transport Association (NATA) and NBAA, sent congressional transportation leaders a letter, urging them to focus on a consensus driven, bipartisan FAA bill given authorization authority for the agency was slated to lapse at the end of the month.
"There is a lack of consensus in the aviation community for Title II of H.R. 2997, the 21st Century AIRR Act, which seeks to effectively hand over control of our nation's air traffic system to the airlines and special interests," the letters stated. "Removing Title II would ensure consensus and allow for our aviation system to continue to serve the traveling public and the aviation industry."

Thirteen days later, with the broader FAA bills unable to pass due in large part to issues surrounding air traffic control

privatization, Congress passed a sixmonth extension, until March 2018, for FAA's programs and policies.

As discussions addressing various critical aviation and transportation policies advance in the 115th Congress, GAMA will continue to push for a long-term FAA reauthorization bill and oppose attempts to privatize the U.S. air traffic control system.

As part of GAMA's public education and advocacy efforts, Garmin International President and CEO Cliff Pemble authored an opinion piece, "The Case Against Air Traffic Control Privatization" that was published in The Hill in October.

"Aviation was born in the United States and rapidly developed into the amazing system of transportation it is today because of fair access to the nation's airspace. Dismantling our current air traffic control system and placing it under the control of the airlines threatens jobs, the economy and fair access to the nation's airspace. Congress should be running away from H.R. 2997."

GAMA President and CEO Pete Bunce (right) discusses the pitfalls of air traffic control privatization during a town hall at EAA AirVenture, alongside EAA Board Chairman and CEO Jack Pelton (left), AOPA President and CEO Mark Baker (second in from left) and NBAA President and CEO Ed Bolen (second in from right).

2017 IN REVIEW

Aircraft Certification Reform Continues to Make Progress in the U.S.

One of GAMA's top advocacy priorities is streamlining aircraft certification around the globe, including the U.S. Federal Aviation Administration's aircraft certification reform process. Making the process more efficient would address market and regulatory challenges the industry faces. In 2017, GAMA saw broad, bipartisan support for this reform.

In June, the U.S. Senate Commerce, Science, and Transportation Committee passed a bipartisan FAA reauthorization bill with language that would have reformed the process for certifying general aviation aircraft products in the U.S. and addressed other regulatory barriers for manufacturing and maintenance organizations.
"We applaud the Senate and thank Commerce Committee Chairman John Thune (R-SD), Ranking Member Bill Nelson (D-FL), Aviation Subcommittee Chairman Roy Blunt (R-MO) and Ranking Member Maria Cantwell (D-WA) for including provisions addressing the broader certification and regulatory changes needed to improve safety, provide more consistency in regulatory interpretation, and keep the U.S. aviation

GAMA Board Member and Textron Aviation executive Michael Thacker testified before the House Transportation and Infrastructure Committee in February about the state of American aviation manufacturing.

"A good idea can be squandered if the implementation of that solution is not timely. As one solution is being certified, others may enter the market, and for many different reasons get to market faster if their certification program is completed more efficiently."

Greg Fedele, Former GAMA Board Member and Sabreliner Aviation President and Innova Aerospace Executive Vice President of Corporate Development, testified before the Senate Commerce, Science and Transportation Subcommittee on Aviation Operations in March about the FAA regulatory and certification processes and reforms to improve U.S. competitiveness in the global marketplace for aviation products and manufacturing.
industry competitive in the global economy," said GAMA President and CEO Pete Bunce, in a press release the association issued about the legislation. Bunce additionally praised the strong support of the 27 Senators, led by Senators Blunt, Cantwell, Moran (R-KS), Klobuchar (D-MN), Gardner (R-CO), and Peters (D-MI), who wrote Chairman Thune and Ranking Member Nelson asking for the inclusion of the provisions.

GAMA also saw broad support for certification in the U.S. House of Representatives. Shortly after GAMA's Hill Day in May, a Washington, DC, publication, The Hill, published an opinion piece by Representatives Sam Graves (R-MO) and Rick Nolan (D-MN) in which the two members of the House of Representatives Transportation and Infrastructure Subcommittee on Aviation made the case for congressional passage of aircraft certification reform. In June, the House Transportation and Infrastructure Committee included the certification title in its FAA
Reauthorization bill, for which GAMA thanked Committee Chairman Bill Shuster (R-PA), Ranking Committee Member Peter DeFazio (D-OR), Aviation

Subcommittee Chair Frank LoBiondo (DNJ), and Aviation Ranking Member Rick Larsen (D-WA).

GAMA saw further progress on certification in July, when the U.S. House of Representatives and the U.S. Senate Appropriations Committees each passed their fiscal year 2018 transportation bills. Each bill supported general aviation through the inclusion of language improving aircraft certification reform.
"We are extremely pleased to see the Committee put teeth into their direction to the FAA to better utilize the Organizational Designation Authority," said GAMA President and CEO Pete Bunce, upon passage of the House Appropriations Bill on July 18. "GAMA has advocated for this for some time, and we appreciate the Committee's support in making this a reality, which will benefit the U.S. economy, aircraft sales and create jobs."
"We thank members of the Committee, particularly Transportation Subcommittee Chairman Mario Diaz-Balart (R-FL) and Ranking Member David Price (D-NC), and Appropriations Chairman Rodney

Frelinghuysen (R-NJ) and Ranking Member Nita Lowey (D-NY), for this critical funding measure," continued Bunce.

GAMA also praised the Senate, particularly Transportation Subcommittee Chairman Susan Collins (R-ME) and Ranking Member Jack Reed (D-RI), as well as Appropriations Chairman Thad Cochran (R-MS) and Ranking Member Patrick Leahy (D-VT), for including language facilitating the flow and safety of aviation products globally, and rejecting the Trump Administration's proposal to separate the U.S. air traffic control system from the federal government.
"The Senate Appropriations Committee showed strong support for our industry in its unanimous vote for this comprehensive and ambitious bill," said GAMA President and CEO Pete Bunce, in a press release issued on July 28. "They addressed our key certification priorities and they clearly conveyed they do not support the Administration's request to privatize America's air traffic control system, which we firmly believe would harm general aviation and small and rural communities."

As discussions addressing various critical aviation and transportation policies advance in the 115th Congress, GAMA will continue to push for meaningful certification and regulatory reform.

U.S. FAA Administrator Michael Huerta speaks to general aviation leaders at the General Aviation Safety Summit in October, which GAMA hosted at its headquarters in Washington, DC.

General Aviation Safety Continues Improving in 2017

The general aviation industry's multipronged efforts to improve safety, technologies and procedures are paying off, with the fewest number of fatal accidents ever recorded in the United States.

The 2016 fatal accident rate was 0.89 per 100,000 flight hours and the preliminary data for 2017 shows further improvement, putting the year on track to be the safest year recorded in general aviation.
"This is a significant accomplishment," FAA Administrator Michael Huerta said

FAA, GAMA and AIA Establish ODA Performance Scorecard

FAA, GAMA and AIA established an Organization Designation Authorization (ODA) Metrics Continuous Improvement Team (CIT) to establish reliable performance measures and a collaborative review process to enhance ODA effectiveness. An annual Scorecard process has been established for individual companies and local FAA certification offices to assess quantitative and qualitative data and develop improvement action plans. The CIT reviews a national roll-up of ODA and certification system performance to identify appropriate opportunities to further improve the utilization of ODA and FAA risk-based level of involvement. This is a collaborative initiative for ensuring continuing progress toward the effective and efficient certification processes that are needed to ensure the health of the general aviation manufacturing industry in the U.S.
about the accident rate, in his remarks to general aviation industry leaders in October 2017. "When we identify issues that need to be addressed, no one ever says, 'That doesn't concern my members,' or 'That's someone else's problem.' Instead, each of you has been willing to roll up your sleeves and ask, 'How can we fix this- together?'"

The completion of the Part 23 rule rewrite and the streamlining of the FAA's approval process for non-required safety enhancing equipment, combined with collaborative government-industry, data-driven safety efforts of the General Aviation Joint Steering Committee and U.S. Helicopter Safety Team, have contributed significantly to improving the general aviation accident rate. The focus in 2018 remains on mitigating the risk of loss-of-control and power plant accidents while investigating the causes of controlled flight into terrain.

GAMA is encouraged by Europe establishing its own safety program for general aviation airplane and rotorcraft operations, which should help further improve safety.

How GAMA Members Gave Back in 2017

GAMA members worked hard to improve safety, innovate and bring new products to the market in 2017. But they also worked hard to give back to their communities, help those in need and invest in the industry's future workforce.

Astronautics Corporation of America employees

 volunteered to work with middle school STEM students from Junior Achievement of Wisconsin's JA Finance Park Golda Meir School; supported the first Aerospace Jam with the Milwaukee Bucks to help high school students learn about potential aerospace industry careers and college students to connect with aerospace industry employers; and demonstrated the company's RoadRunner ${ }^{\top M}$ electronic flight instrument at a Girls \& STEM event at Discovery World Science + Technology Center in Milwaukee.Bombardier Business Aircraft held its sixth Inspiring Future Aviators Program, an educational partnership with the New England Air Museum that encourages young people to pursue aviation careers through interactive tours of the museum and Bombardier Business Aircraft's Hartford Service Center. During the 2016-2017 school year, the program served over 180 local technical and vocational high school students at no cost to them or their schools. To date, the program has reached over 500 middle and high school students.

Mooney International hosted a blood drive for its employees at its South Texas factory to help hurricane victims, especially those in Texas. Employees donated a total of 24 pints of blood, equating to 72 lives saved. Nine employees were first-time donors.

As part of company-sponsored events and individual efforts, Gulfstream Aerospace Corporation employees logged over 25,000 hours of community service in 2017. Gulfstream also continued its workforce and educational outreach through its Savannah-based Student Leadership Program, established in 2008. The program is now a collaborative partnership between Gulfstream, the public-school system and the business community designed to expand learning beyond the classroom and provide opportunities to help high-school students develop leadership skills and prepare for careers after graduation.

Click Bond, Inc. sponsored the FIRST Young Robotics

 Engineers 5480 team with monetary and parts donations. The Reno, Nevada, area high school team participated in a six-week program that challenged them to conceptualize the design of a robot and build and program the robot to do various tasks. After two intense days of competition, fixing mechanical breakdowns and reprogramming robots, the team made it to the last round of the semifinals.GE Aviation employees, through the company's volunteer arm 'GE Volunteers', donated 158,000 hours in more than 50 communities around the globe through 1,267 projects.

For over 15 years, the Embraer Institute has annually given 960 low-income students in Brazil a full scholarship to attend two exceptional high schools, which focus on academic excellence and professional development. The Embraer Institute also established in April 2017 a sister foundation, the Embraer Foundation, to consolidate the company's U.S. social investments. During its first year, the Foundation devoted over 880 hours to volunteering and community engagement activities, and its entrepreneurship program reached over 400 students. Additionally, the Embraer Foundation awarded 11 mini-grants to nonprofit organizations in nine communities around the U.S., where Embraer has operations.

True Blue Power hosted a drive for the Kansas Food Bank and Hope of the Valley Rescue Mission. Employees donated 9,119 pounds of food.

Williams International raised $\$ 18,640$ to help the victims of Hurricanes Harvey, Irma and Maria; two Williams employees volunteered their time, fuel and airplanes to help deliver over 19,000 gifts throughout Michigan in support of Operation Good Cheer, an annual, all-volunteer gift-giving program of Michigan Child and Family Services.

Additionally, the broader general and business aviation industry helped communities and those in need by:

- Bringing help by air when flooding and debris prevented ground transportation from assisting those affected by the devastating hurricanes in Texas, Florida and Caribbean Islands. Non-profit and volunteer organizations such as Aerobridge, Seaplane Crossings and the Eagles Wings Foundation took supplies to the Caribbean Islands destroyed by Hurricanes Irma and Maria and helped evacuate pets and people who were in desperate need of going to a place with available medical services.
- Organizing relief efforts overnight. Pilots from general aviation organizations, such as Angel Flight South Central, transported patients out of Hurricane Harvey devastated areas near Houston. A group called Operation Airdrop organized hundreds of pilots to get involved in relief efforts overnight, putting together a general aviation fleet
consisting of everything from Cessna 152s to Pilatus PC12s.
- Providing free air transportation to, primarily, post 9/11 combat wounded and their families through Veterans Airlift Command (VAC). In 2017, VAC flew 1,600 passengers through its generous network of 2,600 volunteer pilots and aircraft.
- Flying cancer patients, both children and adults, to treatment at no cost on private and corporate planes' empty seats through Corporate Angel Network (CAN). Thanks to the generous cooperation of 500 of America's top corporations, including half of the top 100 in the Fortune 500, CAN has, as of February 2018, flown 55,000 patient flights since its founding in 1981.

Table of Contents

ONE General Aviation Shipments and Billings 15
TWO Canada and U.S. General Aviation Fleet, Flight Activity, and Forecast 24
THREE European Fleet Data 33
FOUR Asia-Pacific Fleet Data. 40
FIVE Select Other GA Aircraft Registry Data for Large Fleets 42
SIX U.S. Pilot and Airmen Certificate Statistics 43
SEVEN Airports and Aeronautical Facilities 48
EIGHT Safety and Accident Statistics 52
2017 Executive Committee 54
GAMA Staff. 55
GAMA Member Companies 56

2017 Market Overview

GAMA's 2017 Annual Report, previously named the Statistical Databook and Industry Outlook, covers aircraft shipments from 39 aircraft manufacturers with details from the past decade in its first chapter.

This year the report also contains expanded fleet data about key general aviation markets in North America, Latin America, and the Asia Pacific region. Courtesy of Japan's Civil Aviation Bureau, this report includes an updated 10-year overview of the Japanese fleet.

Europe is one of the most diverse general aviation regions with an active community across all segments of the industry. This year the report includes standardized fleet data from 37 countries within Europe. At the end of 2017, over 136,000 aircraft comprised the European fleet.

Aircraft Shipment and Billings

General aviation manufacturers delivered over $\$ 23.9$ billion in new aircraft in 2017, a decline from $\$ 24.8$ billion in new aircraft in 2016.

The rotorcraft segment stabilized after several years of declining deliveries. Piston rotorcraft experienced the largest increase of all segments at 264 unit deliveries compared to 224 in 2016, a 17.9 percent increase. Preliminary rotorcraft(*) data also indicates an increase of 3.9 percent, to 662 aircraft delivered.

Business jet airplane deliveries grew slightly by 1.3 percent, rising from 667 to 676 units. Several new aircraft models entering into service in 2017 drove this growth.

Turboprop deliveries slowed to 563 airplanes, compared to 582 deliveries in 2016; a 3.3 percent decline.

Piston airplane shipments strengthened by 6.5 percent, to 1,085 units.

North America remains the largest market for piston airplanes, turboprops, and business jets. The second largest market for piston airplanes was the Asia Pacific region at 13.4 percent of shipments. The second largest market for turboprops was Latin America, at 15.5 percent of shipments. Europe remains the second largest market for business jets, with 17.0 percent of airplanes delivered.

Aircraft Fleet Continues Growing

The business airplane fleet continues expanding worldwide. According to JETNET, LLC., the business jet fleet reached 22,002 airplanes worldwide in 2017, an increase from 21,544 in 2016 and an increase of 5,762 airplanes from one decade ago. The worldwide turboprop fleet reached 15,280 airplanes at the end of the year.

The worldwide rotorcraft fleet expanded to 21,486 turbine helicopters and to 9,723 piston helicopters.

The fractional fleet grew slightly to 818 airplanes, but the number of fractional share owners declined slightly from 4,100 in 2016 to 3,894 at the end of 2017.

Pilot Population

The U.S. pilot population reached 609,306 active pilots. The year-end pilot population data is not directly comparable to prior years, because of a change in how the FAA identifies active certificates, but indications lean positive. The number of female pilots reached a new record, totaling 42,694 at the end of the year; 7.01 percent of the population. The number of active pilots includes 162,455 private pilots and 149,121 student pilots.

You may find additional data on GAMA's website, www.GAMA. aero. If you have questions about the data in this report, please contact GAMA staff by telephone, at +1-202-393-1500 or by email, at info@GAMA.aero.
(*) Leonardo Helicopters Q4 data was not available at the time of publication. Leonardo Helicopters will release yearend results in March 2018. GAMA will update the online 2017 report then. For the purpose of comparison, GAMA excluded 2016 Q4 data for Leonardo.

General Aviation Shipments and Billings

1.1 General Aviation Airplane Shipments by Type of Airplane Manufactured Worldwide (1995-2017)

Year	Grand Total	Single-Engine Piston	Multi-Engine Piston	Total Piston	Turboprop	Business Jet	Total Turbine
1995	1,251	605	61	666	285	300	585
1996	1,437	731	70	801	320	316	636
1997	1,840	1,043	80	1,123	279	438	717
1998	2,457	1,508	98	1,606	336	515	851
1999	2,808	1,689	112	1,801	340	667	1,007
2000	3,147	1,877	103	1,980	415	752	1,167
2001	2,998	1,645	147	1,792	422	784	1,206
2002	2,677	1,591	130	1,721	280	676	956
2003	2,686	1,825	71	1,896	272	518	790
2004	2,962	1,999	52	2,051	319	592	911
2005	3,590	2,326	139	2,465	375	750	1,125
2006	4,054	2,513	242	2,755	412	887	1,299
2007	4,277	2,417	258	2,675	465	1,137	1,602
2008	3,974	1,943	176	2,119	538	1,317	1,855
2009	2,283	893	70	963	446	874	1,320
2010	2,024	781	108	889	368	767	1,135
2011	2,120	761	137	898	526	696	1,222
2012	2,164	817	91	908	584	672	1,256
2013	2,353	908	122	1,030	645	678	1,323
2014	2,454	986	143	1,129	603	722	1,325
2015	2,331	946	110	1,056	557	718	1,275
2016	2,268	890	129	1,019	582	667	1,249
2017	2,324	936	149	1,085	563	676	1,239

FIGURE 1.1 General Aviation Airplane Shipments and Billings Worldwide (1994-2017)

1.2 Estimated Billings (in Millions) for General Aviation Airplane Shipments by Type of Airplane Manufactured Worldwide (1994-2017)

Year	Grand Total	Single-Engine Piston	Multi-Engine Piston	Total Piston	Turboprop	Business Jet	Total Turbine
1994	3,749	n/a	n/a	111	714	2,924	3,638
1995	4,294	n/a	n/a	169	774	3,351	4,125
1996	4,936	n/a	n/a	191	864	3,881	4,745
1997	7,170	n/a	n/a	238	913	6,019	6,932
1998	8,604	n/a	n/a	377	1,011	7,216	8,227
1999	11,560	n/a	n/a	440	930	10,190	11,120
2000	13,496	n/a	n/a	512	1,323	11,661	12,984
2001	13,868	n/a	n/a	541	1,210	12,117	13,327
2002	11,778	n/a	n/a	483	868	10,427	11,295
2003	9,998	n/a	n/a	545	837	8,616	9,453
2004	12,093	n/a	n/a	692	997	10,404	11,401
2005	15,156	n/a	n/a	805	1,189	13,161	14,350
2006	18,815	n/a	n/a	857	1,389	16,555	17,958
2007	21,837	n/a	n/a	897	1,593	19,347	20,940
2008	24,846	n/a	n/a	945	1,953	21,948	23,901
2009	19,474	n/a	n/a	442	1,589	17,443	19,032
2010	19,715	n/a	n/a	415	1,300	18,000	19,300
2011	19,042	n/a	n/a	441	1,365	17,235	18,600
2012	18,895	n/a	n/a	428	1,359	17,108	18,467
2013	23,450	n/a	n/a	571	1,821	21,058	22,879
2014	24,499	n/a	n/a	635	1,849	22,015	23,864
2015	24,129	n/a	n/a	601	1,651	21,877	23,528
2016	21,092	n/a	n/a	661	1,705	18,727	20,432
2017	20,197	n/a	n/a	718	1,490	17,990	19,479

Starting in 2011, the data includes the addition of agricultural airplanes, new piston airplane manufacturers, and some helicopter manufacturers.
Source: GAMA The data cannot be directly compared to 2010 and earlier entries. Refer to Tables 1.4 b and 1.4 c for make and model detail.

1.3 Customer Delivery Region (in Percent of Total) for General Aviation Airplane Shipments by Type of Airplane Manufactured Worldwide (2007-2017)

	Piston					Turboprop					Business Jet				
Year	North America	Europe	AsiaPacific	Latin America	Middle East \& Africa	North America	Europe	AsiaPacific	Latin America	Middle Africa	North America	Europe	AsiaPacific	Latin America	Middle East \& Africa
2007	66.5	16.3	9.2	5.4	2.7	57.2	16.3	8.6	14.4	3.4	58.3	24.9	4.2	7.5	5.2
2008	68.1	15.2	7.5	7.3	2.0	57.3	21.9	6.0	7.4	7.4	53.8	25.9	4.7	9.4	6.3
2009	59.4	21.2	9.5	6.8	2.8	57.8	17.5	8.7	8.1	7.8	49.4	26.3	8.6	9.2	6.4
2010	53.4	18.6	13.7	8.8	5.5	43.2	15.2	16.8	14.7	10.1	42.1	22.8	11.8	14.3	9.0
2011	57.7	12.0	15.6	10.0	4.6	52.6	14.1	14.4	13.6	5.3	50.0	20.2	12.9	10.1	6.8
2012	50.4	19.6	16.3	9.7	4.1	48.6	12.6	17.4	14.5	6.9	49.7	20.8	11.8	11.6	6.1
2013	52.8	17.2	15.1	10.0	5.0	57.1	10.5	14.0	13.2	5.3	52.4	15.6	11.9	11.1	9.0
2014	55.1	19.7	12.1	8.9	4.3	51.3	7.7	19.4	15.3	6.3	52.2	19.5	10.9	9.4	7.9
2015	66.7	11.4	13.5	6.3	2.2	56.2	6.6	16.3	14.5	6.3	60.8	18.0	9.2	7.1	4.9
2016	69.6	10.1	10.2	5.8	4.3	57.8	10.6	13.2	9.9	8.4	62.0	18.8	7.7	6.2	5.3
2017	65.6	9.5	13.4	5.9	5.6	54.2	12.8	14.1	15.5	3.4	63.8	17.0	9.9	5.3	4.0

1.4a Worldwide Business Jet Shipments by Manufacturer (2004-2017)

	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
Airbus	0	9	11	13	11	13	15	10	9	6	5	4	1	0
Airbus Corporate Jet (all models)	0	9	10	12	9	11	-	-	-	-	-	-	-	-
ACJ318	-	-	-	-	-	-	2	2	2	1	0	1	0	0
ACJ319	-	-	-	-	-	-	8	6	6	4	1	1	0	0
ACJ320	-	-	-	-	-	-	3	1	0	0	4	1	0	0
ACJ321	-	-	-	-	-	-	-	-	-	1	0	0	0	0
ACJ330	-	-	-	1	1	1	1	1	1	0	0	1	1	0
ACJ340	-	-	1	0	1	1	1	0	0	0	0	0	0	0
Avcraft (prev. Fairchild)	9	1	0	0	0	0	0	0	0	0	0	0	0	0
Envoy 3	9	1	-	-	-	-	-	-	-	-	-	-	-	-
Boeing Business Jets	3	4	13	7	6	6	12	8	12	7	10	11	4	7
Boeing Business Jet	2	3	12	7	3	3	4	8	2	5	3	4	1	0
Boeing Business Jet 2	1	1	1	0	1	0	2	0	2	1	2	1	0	0
Boeing Business Jet 3	-	-	-	-	2	1	4	0	0	0	0	1	0	0
Boeing 737-800	-	-	-	-	-	-	-	-	-	-	-	-	2	0
Boeing Business Jet 747	-	-	-	-	-	-	-	-	8	0	0	0	0	1
Boeing Business Jet 767	-	-	-	-	-	1	0	0	0	0	0	0	0	0
Boeing Business Jet 777	-	-	-	-	-	1	2	0	0	0	1	1	1	3
Boeing Business Jet 787	-	-	-	-	-	-	-	-	-	1	4	4	0	3
Bombardier Business Aircraft	130	188	213	224	247	173	150	182	179	180	204	199	163	140
Learjet 31A		-	-		-	-	-	-	-	-	-	-	-	-
Learjet 40/XR	17	21	26	57	48	33	16	24	24	1	-	-	-	-
Learjet 45/XR	22	28	30								-	-	-	-
Learjet 60/XR	9	18	15	23	26	13	12	19	15	10	1	-	-	-
Learjet 70/75	-	-	-	-	-	-	-	-	-	18	33	32	24	14
Challenger 300/350	28	50	55	51	60	33	29	37	48	55	54	68	62	56
Challenger 604/605/650	29	36	29	35	44	36	38	43	34	32	36	25	26	23
Global 5000	4	17	18	46	52	51	49	53	54	62	80	73	51	45
Global 6000/Express	20	13	22	46	52	5	4	5	54	62	80	7	5	4
CL 850/870/890	1	5	18	12	17	7	6	6	4	2	0	1	0	2
Cirrus Aircraft	0	0	0	0	0	0	0	0	0	0	0	0	3	22
SF50	-	-	-	-	-	-	-	-	-	-	-	-	3	22
Dassault Aviation	63	51	61	70	72	77	95	63	66	77	66	55	49	49
Falcon 50EX	5	5	5	2	1	-	-	-	-	-	-	-	-	-
Falcon 900C	3	1	-	-	-	-	-	-	-	-	-	-	-	-
Falcon 900EX	1	-	-	-	-	-	-	-	-	-	-	-	-	-
Falcon 900DX	-	2	4	10	4	1	3	-	-	-	-	-	-	-
Falcon 900EX EASy	14	16	16	18	19	17	17	1	-	-	-	-	-	-
Falcon 900LX	-	-	-	-	-	-	4	11	7	11	8	-	-	-
Falcon 2000	11	6	6	1	-	-	-	-	-	-	-	-	-	-
Falcon 2000DX	-	-	-	-	3	1	-	-	-	-	-	-	-	-
Falcon 2000EX	10	-	-	-	-	-	-	-	-	-	-	-	-	-
Falcon 2000EX EASy	19	21	30	33	24	3	-	-	-	-	-	-	-	-
Falcon 2000LX	-	-	-	-	-	23	30	20	22	8	-	-	-	-
Falcon 2000LXS	-	-	-	-	-	-	-	-	-	3	18	-	-	-
Falcon 2000S	-	-	-	-	-	-	-	-	-	12	13	-	-	-
Falcon 7X	-	-	-	6	21	32	41	31	37	43	27	-	-	-
Falcon 2000S/2000LXS/900LX/7X/8X	-	-	-	-	-	-	-	-	-	-	-	55	49	49
Embraer	13	20	27	36	38	122	145	99	99	119	116	120	117	109
Phenom 100/E	-	-	-	-	2	97	100	41	29	30	19	12	10	18
Phenom 300	-	-	-	-	-	1	26	42	48	60	73	70	63	54
Legacy 450	-	-	-	-	-	-	.	-	-	-	-	3	12	14
Legacy 500	-	-	-	-	-	-	-	-	-	-	3	20	21	15
Legacy 600/650	13	20	27	36	36	18	11	13	17	21	18	12	9	7
Lineage 1000/E190 Head of State	-	-	-	-	-	5	5	3	2	4	3	3	2	1
Shuttles (ERJs and E-Jets)	-	-	-	-	-	1	3	0	3	4	0	0	0	0
Emivest (prev. Sino Swearingen)	0	0	1	1	0	2	0	0	0	0	0	0	0	0
SJ30-2	-	-	1	1	0	2	0	0	0	0	0	0	0	0
Gulfstream Aerospace Corporation	78	89	113	138	156	94	99	99	94	144	150	154	115	120
G100/G150 (prev. IAI Astra)														
G200 (prev. IAl Galaxy) G280	22	26	42	59	68	19	24	21	11	23	33	34	27	30
G300/350/400/450 (prev. GIV/GIVSP) G500/G550 (prev. GV/GVSP), G650, G650ER	56	63	71	79	88	75	75	78	83	121	117	120	94	90
Honda Aircraft Company	0	0	0	0	0	0	0	0	0	0	0	2	23	43
HA-420 HondaJet	-	-	-	-	-	-	-	-	-	-	-	2	23	43
ONE Aviation Corp. (prev. Eclipse Aero)	0	0	1	98	161	0	0	0	0	0	12	7	8	6
Eclipse 500	-	-	1	98	161	-	-	-	-	-	-	-	-	-
Eclipse 550	-	-	-	-	-	-	-	-	-	-	12	7	8	6
Textron Aviation (Beechcraft)	115	141	140	162	160	98	73	52	32	6	0	0	0	0
Premier I/A	37	30	23	54	31	16	11	11	3	-	-	-	-	-
Hawker 400XP	28	53	53	41	35	11	12	1	-	-	-	-	-	-
Hawker 750	-	-	-	-	23	13	5	7	-	-	-	-	-	-
Hawker 800XP	50	58	8	-	-	-	-	1	-	-	-	-	-	-
Hawker 850XP	-	-	56	35	15	3	1	0	-	-	-	-	-	-
Hawker 900XP	-	-	-	32	50	35	28	22	17	-	-	-	-	-
Hawker 4000	-	-	-	-	6	20	16	10	12	6	-	-	-	-

1.4a Worldwide Business Jet Shipments by Manufacturer (2004-2017) Continued

	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
Textron Aviation (Cessna Aircraft)	181	247	307	388	466	289	178	183	181	139	159	166	178	180
CE-510 Citation Mustang	-	-	1	45	101	125	73	43	38	20	8	8	10	7
CE-525 Citation CJ1	20	14	-	-	-	-	-	-	-	-	.	-	.	.
CE-525 Citation CJ1+	-	4	25	34	20	14	3	2	-	-	-	-	-	-
CE-525 Citation M2	-	-	-	-	-	-	-	-	-	12	46	41	38	39
CE-525A Citation CJ2	27	23	1	-	-	-	-	-	-	-	-	-	-	
CE-525A Citation CJ2+	-	-	36	44	56	21	17	15	19	15	2	-	-	-
CE-525B Citation CJ3	6	48	72	78	88	40	20	22	21	15	6	-	-	
CE-525B Citation CJ3+	.	.	.	-	-	.	-	-	.	-	10	23	25	26
CE-525C Citation CJ4	-	-	-	-	-	-	19	48	44	33	28	33	29	23
CE-550 Citation Bravo	25	21	18	-	-	-	-	-	-	-	-	-	.	.
CE-560 Citation Encore	24	13	12	-	-	-	-	-	-	-	-	-	-	
CE-560 Citation Encore+	.	.	.	23	28	5	5	4	-	-	-	-	-	
CE-560 Citation Excel	23	-	-	-	-	-	-	-	-	-	-	-	-	
CE-560 Citation XLS	32	64	73	82	72	7	-	-	-	-	-	-	-	
CE-560 Citation XLS+	-	-	-	-	8	37	22	27	31	31	22	21	19	18
CE-680 Citation Sovereign	9	46	57	65	77	33	16	19	22	5	-	-	-	-
CE-680 Citation Sovereign+	.	-	-	-	-	8	28	18	11	9
CE-680A Citation Latitude	-	-	-	-	-	-	-	-	-	-	-	16	42	54
CE-750 Citation X	15	14	12	17	16	7	3	3	6	-	-	-	-	-
CE-750 Citation X_{+}	-	-	-	-	-	-	-	-	-	-	9	6	4	4
Total Number of Airplanes	592	750	887	1,137	1,317	874	767	696	672	678	722	718	667	676
\% Change	14.3\%	26.7\%	18.3\%	28.2\%	15.8\%	-33.6\%	-12.2\%	-9.3\%	-3.4\%	0.9\%	6.5\%	-0.6\%	-7.1\%	1.3\%
Total Billings for Airplanes (\$M)	10,404	13,161	16,555	19,347	21,948	17,443	18,000	17,235	17,108	21,058	22,015	21,877	18,727	17,990
\% Change	20.7\%	26.5\%	25.8\%	16.9\%	13.4\%	-20.5\%	3.2\%	-4.2\%	-0.7\%	23.1\%	4.5\%	-0.6\%	-14.4\%	-3.9\%

1.4b Worldwide Turboprop Airplane Shipments by Manufacturer (2004-2017)

	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
Air Tractor	n/a	130	168	174	145	113	112	133						
AT-402A	n/a	0	1	0	0	0	0	5						
AT-402B	n/a	9	21	33	20	11	10	15						
AT-502A	n/a	3	1	2	1	0	8	17						
AT-502B	n/a	57	81	70	61	36	22	32						
AT-504	n/a	n/a	n/a	n / a	n/a	n/a	n/a	4	6	2	3	3	1	5
AT-602	n/a	10	10	18	14	14	16	7						
AT-802	n/a	26	18	9	10	8	5	6						
AT-802A	n/a	21	30	40	36	29	40	39						
AT-802AF	n/a	10	3	6										
AT-802F	n/a	2	3	1										
AVIC General	0	0	0	0	0	0	0	0	0	0	0	0	6	2
Y12 Series	n / a	n/a	6	2										
Daher	31	31	42	46	60	36	38	38	38	40	51	55	54	57
TBM 700	31	31	-	-	-	-	-	-	-	-	-	-	-	-
TBM 850	-	-	42	46	60	36	38	38	38	40	-	-	-	-
TBM 900	-	-	-	-	-	-	-	-	-	-	51	55	8	-
TBM 910	-	-	-	-	-	-	-	-	-	-	-	-	-	29
TBM 930	-	-	-	-	-	-	-	-	-	-	-	-	46	28
Extra Aircraft	0	0	0	0	0	0	0	0	2	1	2	0	0	0
EA500	-	-	-	-	-	-	-	-	2	1	2	-	-	-
Maule Air Incorporated	2	0	0	0	1	0	0	0	0	0	0	0	0	0
M-7-420AC	0	0	0	0	1	0	0	0	0	0	0	0	0	0
MT-7-420	2	0	0	0	0	0	0	0	0	0	0	0	0	0
Pacific Aerospace Corporation	8	10	5	10	15	12	11	10	10	6	4	5	8	7
PAC 750XL	8	10	5	10	15	12	11	10	10	6	4	5	8	7
Piaggio Aerospace	16	14	19	21	30	24	11	14	5	2	2	3	3	2
P. 180 Avanti	16	13	-	-	-	-	-	-	-	-	-	-	-	-
P. 180 Avanti Il	-	1	19	21	30	24	11	14	5	2	2	-	-	-
P. 180 Avanti Evo	-	-	-	-	-	-	-	-	-	-	-	3	3	2
Pilatus	70	80	90	98	100	105	84	69	67	69	76	74	100	86
PC-6 Porter	n/a	n/a	n/a	6	3	5	5	6	5	4	10	4	9	1
PC-12	70	80	90	92	97	100	79	63	62	65	66	70	91	85
Piper Aircraft, Inc.	26	40	49	53	52	29	25	32	32	34	36	27	34	47
PA-46-500 TP Meridian/M500	26	40	49	53	52	29	25	32	32	34	36	27	12	12
PA-46-600 TP M600	-	-	-	-	-	-	-	-	-	-	-	-	22	35
Quest Aircraft Company	0	0	0	1	7	24	14	13	15	28	30	32	36	31
Kodiak 100	-	-	-	1	7	24	14	13	15	28	30	32	36	31
Textron Aviation (Beechcraft)	102	114	140	157	172	119	90	92	89	135	127	117	106	86
King Air C90	27	35	52	46	66	44	28	29	27	27	21	15	11	13
King Air B200 / B250	39	37	42	58	54	37	24	25	22	36	35	28	32	28
King Air 350	36	42	46	53	52	38	38	38	40	72	71	74	63	45
Textron Aviation (Cessna Aircraft)	64	86	67	79	101	97	95	93	107	105	94	102	84	69
CE-208 Caravan 675	13	11	8	11	12	12	8	10	11	11	13	9	13	10
CE-208B Grand Caravan	51	75	59	68	89	85	87	83	96	94	81	93	71	59

1.4b Worldwide Turboprop Airplane Shipments by Manufacturer (2004-2017) Continued

	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
Thrush Aircraft, Inc.	n/a	35	51	51	36	29	39	43						
S2R-T34	n/a	30	39	20	10	8	10	15						
S2RHG-T65	n/a	1	0	1	0	0	2	1						
S2R-T660	n/a	1	0	1	1	7	17	6						
S2R-G10	n/a	3	3	2	1	0	0	0						
S2R-H80	n/a	0	9	27	24	14	10	21						
Total Number of Airplanes	319	375	412	465	538	446	368	526	584	645	603	557	582	563
\% Change	17.3\%	17.6\%	9.9\%	12.9\%	15.7\%	-17.1\%	-17.5\%	n/a	11.0\%	10.4\%	-6.5\%	-7.6\%	3.4\%	-3.3\%
Total Billings for Airplanes (\$M)	997	1,189	1,389	1,593	1,953	1,589	1,300	1,365	1,359	1,821	1,849	1,651	1,705	1,490
\% Change	19.1\%	19.3\%	16.9\%	14.6\%	22.7\%	-18.7\%	-18.2\%	n/a	-0.4\%	33.9\%	1.5\%	-10.7\%	3.3\%	-12.6\%

1.4c Worldwide Piston-Engine Airplane Shipments by Manufacturer (2004-2017)

	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
Adam Aircraft	0	2	4	3	0	0	0	0	0	0	0	0	0	0
A500	-	2	4	3	-	-	-	-	-	-	-	-	-	-
Air Tractor	0	0	0	0	0	0	0	0	1	0	1	1	0	1
AT-401B	-	-	.	-	-	.	-	.	1	0	1	1	0	1
Alpha Aviation	0	0	5	13	1	0	0	0	0	0	0	0	0	0
120 T	-	-	.	2	-	-	-	.	-	.	-	-	-	.
160A	.	-	5	9	1	-	-	-	-	-	-	-	-	-
160 Ai	-	-	-	2	0	-	-	-	-	-	-	-	-	-
American Champion	94	89	60	70	54	26	37	29	18	26	30	19	19	15
7EC Champ	-	-	1	21	7	1	0	3	0	3	1	1	2	0
7ECA Aurora	2	3	2	4	3	2	2	1	0	0	2	1	0	0
7GCAA Adventurer	12	12	6	6	2	1	2	0	0	0	0	0	0	0
7GCBC Citabria Explorer	24	26	16	8	8	4	4	6	3	1	3	0	1	2
8GCBC Scout	18	9	14	8	10	8	15	13	7	6	7	6	10	8
8KCAB Super Decathlon	38	39	21	23	24	10	14	6	8	10	14	6	6	5
8KCAB Xtreme Decathlon	-	-	-	-	-	-	-	-	-	6	3	5	0	0
Aviat Aircraft	42	47	0	0	0	0	0	0	0	0	0	0	0	0
A-1B Husky	30	41	n/a											
Husky Pup	3	1	n/a											
S-2C Pitts	9	5	n/a											
AVIC General	0	0	0	0	0	0	0	0	0	0	0	0	26	22
Y5B	n/a	4	5											
LE500	n/a	n/a	n/a	n / a	n/a	11	5							
A2C	n/a	11	12											
Columbia Aircraft (prev. Lancair)	78	114	185	152	0	0	0	0	0	0	0	0	0	0
Columbia 300	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Columbia 350	28	25	39	34	-	-	-	-	-	-	-	-	-	-
Columbia 400	50	89	146	118	-	-	-	-	-	-	-	-	-	-
Cirrus Aircraft	553	600	721	710	549	266	264	255	253	276	308	301	317	355
Cirrus SR20	91	116	150	112	115	28	42	48	84	32	31	31	35	46
Cirrus SR22	459	475	565	588	427	238	165	105	81	112	117	128	133	135
Cirrus SR22T	-	-	-	-	-	-	57	102	88	132	160	142	149	174
Cirrus SRV	3	9	6	10	7	-	-	-	-	-	-	-	-	-
CubCrafters	n/a	47	58	63	60	52	26	13						
CC11-100 Sport Cub S2	n/a	2	0	2	0	0	0	1						
CC11-160 Carbon Cub SS	n/a	38	57	52	53	47	24	6						
CC18-180 Top Cub	n/a	7	1	9	7	5	2	6						
CC19-180 XCub	-	-	-	-	-	-	-	-	-	-	-	-	8	14
Daher	5	9	0	0	0	0	0	0	0	0	0	0	0	0
TB-9 Tampico	0	1	.	.	-	-	-	-	-	-	-	-	-	-
TB-10	3	4	-	-	-	-	-	-	-	-	-	-	-	-
TB-20	0	1	-	-	-	-	-	-	-	-	-	-	-	-
TB-21	2	3	-	-	-	-	-	-	-	-	-	-	-	-
TB-200	0	0	-	-	-	-	-	-	-	-	-	-	-	-
Diamond Aircraft	261	329	438	471	308	163	130	185	156	139	202	144	132	137
HK-36	-	-	-	-	-	13	10	3	3	1	0	1	0	0
DA-20	58	54	55	58	69	14	31	40	32	14	16	22	20	8
DA-40	203	207	220	232	154	98	57	72	93	102	136	75	48	60
DA-42	-	68	163	181	85	38	32	70	28	22	50	44	34	36
DA-62	-	-	-	-	-	-	-	-	-	-	-	2	30	33
Discovery Aviation (prev. Liberty)	0	2	29	38	33	13	14	3	0	0	0	0	0	0
XL2	-	2	29	38	33	13	14	3	0	0	0	0	0	0
Extra Aircraft	n/a	27	29	31	27	27	25							
EA300	n/a	27	29	31	27	27	25							
Flight Design GmbH	n/a	89	76	89	88	59	23	32						
ASTM CT Series	n/a	89	76	89	88	59	23	32						
ICON Aircraft	0	0	0	0	0	0	0	0	0	0	0	0	5	10
A5	-	-	-	-	-	-	-	-	-	-	-	-	5	10

CONTINUED ON NEXT PAGE
1.4c Worldwide Piston-Engine Airplane Shipments by Manufacturer (2004-2017) Continued

	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
Mahindra Aerospace (prev. GippsAero)	20	22	20	17	19	11	14	10	14	12	17	14	9	9
Airvan 8	20	22	20	17	19	11	14	10	14	12	17	14	9	9
Maule Air Incorporated	25	27	38	36	27	7	4	4	9	6	2	13	3	0
M-4-180A, V	-	1	7	5	-	-	-	-	-	-	1	-	-	-
M-7-235, A, B, C	8	11	8	6	7	1	3	-	1	-	1	-	1	n/a
M-7-260, C	3	4	2	4	4	4	-	1	3	4	-	-	1	n/a
MT-7-235	1	2	9	2	6	2	-	.	1	-	-	-	-	-
MT-7-260	-	2	4	-	-	-	-	-	-	-	-	-	-	
MX-7-180, A, B, C, AC	5	3	4	6	4	-	1	1	1	1	-	12	1	n/a
MXT-7-160	-	-	.	-	-	-	.	-	-	.	-	-	-	-
MXT-7-180, A, AC	8	4	4	12	6	-	-	2	3	-	-	-	-	
M-8-235	-	-	-	1	-	-	-	-	-	-	-	-	-	
M-9-235	-	-	-	-	-	-	-	-	-	1	-	1	-	n/a
Mooney International Corporation	37	85	75	79	65	19	2	0	0	0	1	11	7	7
M20M Bravo	9	20	5	1	.	-	-	.	-	
M20R Ovation	-	.	-	-	-	-	-	-	-	-	-	-	-	
M20R Ovation 2	28	65	63	20	21	4	0	0	0	0	0	3	1	2
M20R Ovation Ultra	.	-	.	-	-	-	-	-	-	-	-	-	-	1
M20S Eagle 2	-	-	-	-	-	-	-	-	-	-	-	8	-	
M20TN Acclaim	-	-	7	58	44	15	2	0	0	0	1	0	6	1
M20TN Acclaim Ultra	-	-	-	-	-	-	-	-	-	-	-	-	-	3
Pacific Aerospace Corporation	6	0	0	0	0	0	0	0	0	0	0	0	0	0
CT/4E Airtrainer	6	-	-	-	-	-	-	-	-	-	-	-	-	
Piper Aircraft, Inc.	163	193	189	168	216	61	135	104	126	154	136	111	93	108
PA-28-161 Warrior III	18	37	19	27	23	8	23	15	20	2	3	20	5	0
PA-28-181 Archer III	19	16	29	16	7	1	21	2	4	48	45	25	42	72
PA-28R-201 Arrow IV	12	9	5	8	1	0	4	0	2	1	8	5	7	9
PA-32-301FT Piper 6X	24	18	10	12	0	-	-	-	-	-	-	-	-	-
PA-32-301XTC Piper 6XT	14	16	11	-	.	-	-	-	-	-	-	-	-	-
PA-32R-301 Saratoga II HP	9	8	10	-	-	-	-	-	-	-	-	-	-	-
PA-32-301T Saratoga II TC	31	37	37	39	12	-	-	-	-	-	-	-	-	
PA-34-220T Seneca V	10	12	26	22	27	7	22	21	17	22	10	8	3	1
PA-44-180 Seminole	11	29	11	14	24	5	16	16	22	23	22	17	10	17
PA-46-350P Malibu Mirage/M350	15	11	31	30	21	7	26	33	49	42	37	34	26	9
PA-46R-350T Matrix	-	-	-	-	101	33	23	17	12	16	11	2	0	0
Quartz Mountain Aerospace	0	0	0	0	11	0	0	0	0	0	0	0	0	0
QMA 11E	-	-	-	-	11	-	-	-	-	-	-	-	-	
Symphony Aircraft (prev. OMF)	1	10	5	0	0	0	0	0	0	0	0	0	0	0
Symphony 160	1	10	5	-	-	-	-	.	-	-	-	-	-	-
TECNAM Aircraft	n/a	197	190	191	191	171								
ASTM - LSA	n/a	108	108	102	73	72								
P2002JF	n/a	33	18	20	33	20								
P92JS	n/a	15	7	4	7	3								
P2002JR	n/a	2	0	0	0	0								
P2008JC	n/a	n/a	n/a	n/a	n/a	n / a	n/a	n/a	n/a	19	36	24	24	19
P2006T	n/a	20	21	21	32	39								
P2010P Twenty Ten	-	-	-	-	-	-	-	-	-	-	-	20	22	18
Textron Aviation (Beechcraft)	93	99	118	111	103	56	51	54	36	70	72	41	45	36
Beechcraft Bonanza A/G36	62	71	80	73	63	36	22	24	12	35	32	23	25	13
Beechcraft Baron B/G58	31	28	38	38	40	20	29	30	24	35	40	18	20	23
Textron Aviation (Cessna Aircraft)	654	822	865	807	733	355	261	413	283	206	220	271	217	238
CE-162 SkyCatcher	-	-	-	-	-	1	22	168	19	-	-	-	.	-
CE-172R Skyhawk	32	37	87	133	55	16	8	26	27	0	0	-	-	-
CE-172S Skyhawk	204	314	322	240	228	110	77	77	113	106	155	143	100	129
CE-182T Skylane	196	241	140	161	109	58	64	40	48	13	0	33	50	46
CE-T182T Turbo Skylane	133	118	187	140	105	75	36	37	19	26	0	-	-	-
CE-206H Stationair	22	29	25	20	17	3	4	11	16	3	0	-	-	-
CE-T206H Turbo Stationair	67	83	104	111	95	46	42	53	40	37	43	51	36	40
CE-350 Corvalis	-	-	-	1	14	5	1	0	1	0	0	-	-	-
CE-240 TTx (prev. CE-400 Corvalis TTx)	-	-	-	1	110	41	7	1	0	21	22	44	31	23
Tiger Aircraft	19	15	3	0	0	0	0	0	0	0	0	0	0	0
AG-5B Tiger	19	15	3	-	-	-	-	-	-	-	-	-	-	-
WACO Classic Aircraft	n/a	5	6	7	11	10	7	6						
2T-1A-2	-	-	-	-	-	-	-	.	-	1	6	6	3	1
YMF-5D	n / a	n/a	n/a	n/a	n/a	n/a	n/a	5	6	6	5	4	4	5
XtremeAir GmbH	n/a	9	9	8	9	0	0	0						
XA41	n/a	4	2	2	0	n/a	n/a	n/a						
XA42	n/a	5	7	6	9	n/a	n/a	n/a						
Total Number of Airplanes	2,051	2,465	2,755	2,675	2,119	977	912	1,207	1,072	1,282	1,378	1,265	1,147	1,185
\% Change	8.2\%	20.2\%	11.8\%	-2.9\%	-20.8\%	-53.9\%	-6.7\%	n/a	-11.2\%	n/a	7.5\%	-8.2\%	-9.7\%	3.3\%
Total Billings for Airplanes (\$M)	692	805	857	897	945	442	415	441	428	571	635	601	661	718
\% Change	27.0\%	16.3\%	6.5\%	4.7\%	5.3\%	-53.1\%	-7.7\%	n/a	-3.0\%	n/a	11.1\%	-5.3\%	10.0\%	8.6\%
Table 1.4 c includes all piston engine airplanes deliv ther than Part/CS-23, such as those type certified	d by the der EASA	ufacture Very Ligh	ed, inclu rcraft and	type-cert Light Spo	d piston-en Aircraft, as	ne airplanes ll as Specia	der airwo ight Sport	ness sta raft.						re: GAM

1.4d Worldwide Rotorcraft Shipments by Manufacturer (2004-2017) Civil-Commercial and Military-Government Combined

	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
Airbus Helicopters	n/a	507	440	451	418	360	380	369						
HC120 (prev. EC120)	n/a	10	11	12	7	2	5	5						
AS350 B2	n/a	59	36	32	23	9	7	0						
H125/H125M (prev. EC125/AS350 B3e/AS550 C3e)	n/a	n/a	n/a	n / a	n/a	n / a	n / a	150	130	187	134	95	104	125
H130 (prev. EC130)	n/a	42	43	35	58	69	54	35						
AS355 NP/AS555 AP	n/a	7	8	5	3	3	7	1						
H135/H135M (prev. EC135/EC635)	n/a	n/a	n / a	74	67	48	42	35	40	55				
H145/H145M (prev. EC145/EC645/UH-72A)	n/a	89	82	69	73	68	107	93						
AS365 N3/AS565 Mbe	n/a	14	11	8	4	7	11	16						
H155 (prev. EC155)	n/a	12	7	10	10	10	3	3						
H175 (prev. EC175)	-	-	-	-	-	-	-	-	-	-	3	4	4	11
H215/H215M (prev. AS332/AS532)	n/a	n/a	n/a	n / a	n/a	n / a	n / a	4	3	4	6	7	10	3
H225/H225M (prev. EC225/EC725)	n/a	26	32	30	43	35	9	5						
TIGER	n/a	20	10	11	12	16	19	17						
Bell Helicopter	111	123	159	181	175	165	139	188	247	279	239	223	171	192
505	-	-	-	-	-	-	-	-	-	-	-	-	-	27
206B	7	16	20	28	18	22	5	-	-	-	-	-	-	-
206L/LT	18	22	21	24	21	16	15	14	9	11	13	12	10	4
407/GX/GXP	40	41	67	73	79	81	62	55	85	110	86	99	57	44
412/EP/EPI	33	29	35	39	36	28	28	20	39	36	26	12	10	13
427	9	5	7	10	7	4	1	4	4	-	-	.	-	.
429/WLG	-	-	-	-	-	2	21	28	43	56	53	52	28	36
430	4	10	9	7	3	-	-	-	-	.	-	-	-	-
Huey II	-	-	-	-	11	12	7	4	8	.	-	.	9	8
H-1	n/a	n/a	n / a	28	21	25	24	24	35	38				
V22	n/a	35	38	41	37	24	22	22						
Brantly	0	2	0	0	0	0	0	0	0	0	0	0	0	0
B-2B	0	2	0	0	0	0	0	0	0	0	0	0	0	0
Enstrom Helicopter Corp.	23	29	23	19	10	6	4	n/a	16	27	26	20	12	5
F-28/280	5	15	10	6	1	1	1	n/a	2	4	2	5	3	1
480	18	14	13	13	9	5	3	n/a	14	23	24	15	9	4
Hélicoptères Guimbal	0	0	0	0	n/a	n/a	n/a	n/a	n/a	n/a	27	44	50	35
Cabri G2	-	-	-	-	n/a	n / a	n/a	n/a	n/a	n/a	27	44	50	35
Leonardo Helicopters (prev. AgustaWestland)	n/a	214	180	160	172	0								
AW119Ke	n/a	22	17	16	22	n/a								
AW109Power	n/a	n/a	n/a	n/a	n/a	n / a	n/a	n/a	n/a	9	7	8	0	n/a
GRANDNEW	n/a	35	14	14	17	n/a								
AW139	n/a	118	101	72	63	n/a								
AW169	.	.	.	-	-	-	.	.	.	-	-	1	22	n/a
AW149	-	-	-	-	-	-	-	-	-	-	-	-	-	n/a
AW189	n/a	n/a	n/a	n / a	n/a	n / a	n / a	n/a	n/a	0	10	16	7	n/a
AW159	n/a	n/a	n/a	n/a	n/a	n/a	n / a	n/a	n/a	15	11	13	19	n/a
SUPER LYNX	-	-	-	-	-	-	-	-	-	-	-	4	1	n/a
T129	n/a	n/a	n/a	n / a	n/a	n/a	n / a	n/a	n/a	0	5	4	10	n/a
AW101	n/a	5	5	5	3	n/a								
CH47F	n/a	0	5	3	5	n/a								
SW4	n/a	0	0	0	3	n/a								
W3	n/a	n/a	n/a	n / a	n/a	n / a	n/a	n/a	n/a	10	5	4	0	n/a
MD Helicopters	10	3	13	18	52	40	12	n/a						
500	1	0	n / a	3	n/a	n / a	n / a	n/a						
520 N	0	2	n/a	3	n/a									
530	1	0	n/a	2	n/a	n / a	n / a	n/a						
600	4	1	n/a	3	n/a	n / a	n / a	n/a						
900	4	0	n/a	7	n/a									
NH Industries	n/a		n/a			n/a	n/a	33	35	43	53	35	38	40
NH90	n/a	33	35	43	53	35	38	40						
Robinson Helicopter Company	690	806	749	823	893	433	162	356	517	523	329	347	234	305
R22	234	243	97	159	164	25	40	56	40	42	42	34	19	34
R44 Cadet	,	3	,	,	-	,	1	,	,		-	,	,	20
R44 Raven I/ II	456	563	652	664	729	408	112	212	286	289	186	196	152	174
R66	-	-	-	-	-	-	10	88	191	192	101	117	63	77
Schweitzer Aircraft	48	58	61	70	51	27	29	8	1	0	0	0	0	0
300 C	13	12	12	11	16	10	14	n/a	n/a	.	-	.	-	.
$300 \mathrm{CB} / 300 \mathrm{CBi}$	27	40	44	51	27	13	6	n/a	n/a	-	-	-	-	-
330/333	8	6	5	8	8	4	9	n/a	n/a	-	-	-	-	-
Sikorsky Aircraft Corp.	34	49	52	79	78	58	42	249	227	231	231	178	181	172
S-70	1	0	0	0	0	0	0	0	0	0	0	0	0	0
S-76	29	30	36	50	53	34	21	16	5	26	17	13	5	4
S-92	4	19	16	29	25	24	21	20	30	37	42	16	7	3
Blackhawk	n/a	n/a	n/a	n/a	n / a	n / a	n / a	213	192	125	123	106	133	134
Seahawk	n/a	213	192	43	49	43	36	31						
Total Number of Rotorcraft	n/a	1,768	1,503	1,367	1,238	n/a								
\%Change	n/a	-15.1\%	-8.9\%	-9.4\%	n/a									

1．5 U．S．－Manufactured General Aviation Airplane Shipments by Type（1948－2017）

	Year	Grand Total	Single－Engine Piston	Mult－Engine Piston	Total Piston	Turboprop	Business Jet	Total Turbine	Companies Reporting	Factory Net Billings（\＄Millions）
	1948	7，037	n／a	n／a	7，037	－	－	．	12	\＄32
	1949	3，405	n／a	n／a	3，405	－	－	－	11	\＄18
	1950	3，386	n／a	n／a	3，386	－	－	－	13	\＄19
	1951	2，302	n／a	n／a	2，302	－	－	－	12	\＄17
	1952	3，058	n／a	n／a	3，058	－	－	－	8	\＄27
	1953	3，788	n／a	n／a	3，788	－	－	－	7	\＄34
	1954	3，071	n／a	n／a	3，071	－	－	－	7	\＄43
	1955	4，434	n／a	n／a	4，434	－	－	－	7	\＄68
	1956	6，738	n／a	n／a	6，738	－	－	－	8	\＄104
	1957	6，118	n／a	n／a	6，118	－	－	－	9	\＄100
	1958	6，414	n／a	n／a	6，414	－	－	－	10	\＄102
	1959	7，689	6，849	840	7，689	－	－	－	9	\＄130
	1960	7，588	6，569	1，019	7，588	－	－	－	8	\＄151
	1961	6，756	5，995	761	6，756	－	－	－	8	\＄124
	1962	6，697	5，690	1，007	6，697	－	－	－	7	\＄137
	1963	7，569	6，248	1，321	7，569	－	－	－	7	\＄153
	1964	9，336	7，718	1，606	9，324	9	3	12	8	\＄199
	1965	11，852	9，873	1，780	11，653	87	112	199	8	\＄318
	1966	15，768	13，250	2，192	15，442	165	161	326	10	\＄445
	1967	13，577	11，557	1，773	13，330	149	98	247	14	\＄360
	1968	13，698	11，398	1，959	13，357	248	93	341	14	\＄426
	1969	12，457	10，054	2，078	12，132	214	111	325	14	\＄585
	1970	7，292	5，942	1，159	7，101	135	56	191	13	\＄337
	1971	7，466	6，287	1，043	7，330	89	47	136	11	\＄322
	1972	9，774	7，898	1，548	9，446	179	149	328	12	\＄558
	1973	13，646	10，780	2，413	13，193	247	206	453	12	\＄828
	1974	14，166	11，562	2，135	13，697	250	219	469	12	\＄909
	1975	14，056	11，439	2，116	13，555	305	196	501	12	\＄1，033
	1976	15，449	12，783	2，120	14，903	359	187	546	12	\＄1，226
	1977	16，907	14，057	2，195	16，252	428	227	655	12	\＄1，488
	1978	17，811	14，398	2，634	17，032	548	231	779	12	\＄1，781
	1979	17，050	13，286	2，843	16，129	639	282	921	12	\＄2，165
	1980	11，860	8，640	2，116	10，756	778	326	1，104	12	\＄2，486
	1981	9，457	6，608	1，542	8，150	918	389	1，307	12	\＄2，920
	1982	4，266	2，871	678	3，549	458	259	717	11	\＄2，000
	1983	2，691	1，811	417	2，228	321	142	463	10	\＄1，470
	1984	2，431	1，620	371	1，991	271	169	440	9	\＄1，681
	1985	2，029	1，370	193	1，563	321	145	466	9	\＄1，431
	1986	1，495	985	138	1，123	250	122	372	9	\＄1，262
응	1987	1，085	613	87	700	263	122	385	9	\＄1，364
\％	1988	1，143	628	67	695	291	157	448	11	\＄1，923
－	1989	1，535	1，023	87	1，110	268	157	425	11	\＄1，804
W	1990	1，144	608	87	695	281	168	449	14	\＄2，008
¢	1991	1，021	564	49	613	222	186	408	14	\＄1，968
\％	1992	941	552	41	593	177	171	348	16	\＄1，840
$\frac{5}{5}$	1993	964	516	39	555	211	198	409	16	\＄2，144
U	1994	929	444	55	499	208	222	430	13	\＄2，357
4	1995	1，077	515	61	576	255	246	501	13	\＄2，842
$\stackrel{\square}{c}$	1996	1，171	607	42	649	289	233	522	13	\＄3，048
Σ	1997	1，562	898	86	984	236	342	578	12	\＄4，593
\bigcirc	1998	2，212	1，434	94	1，528	271	413	684	12	\＄5，761
．	1999	2，530	1，634	114	1，748	265	517	782	13	\＄7，843
．	2000	2，816	1，810	103	1，913	315	588	903	15	\＄8，558
¢	2001	2，631	1，581	147	1，728	303	600	903	14	\＄8，641
To	2002	2，207	1，366	130	1，496	187	524	711	12	\＄7，719
$\stackrel{\square}{\square}$	2003	2，137	1，519	71	1，590	163	384	547	13	\＄6，434
$\stackrel{\text { ® }}{ }$	2004	2，355	1，706	52	1，758	194	403	597	13	\＄6，816
－	2005	2，857	2，024	71	2，095	240	522	762	13	\＄8，667
ヘ	2006	3，147	2，208	79	2，287	256	604	860	16	\＄10，367
$\stackrel{-}{\square}$	2007	3，279	2，097	77	2，174	290	815	1，105	16	\＄11，941
\bigcirc	2008	3，079	1，700	91	1，791	333	955	1，288	15	\＄13，348
¢	2009	1，585	770	32	802	269	514	783	13	\＄9，082
$\xrightarrow{\sim}$	2010	1，334	679	67	746	224	364	588	12	\＄7，875
を	2011	1，465	639	67	706	395	364	759	16	\＄8，266
\geqslant	2012	1，518	645	63	708	463	347	810	17	\＄8，017
之	2013	1，615	674	80	754	527	334	861	17	\＄11，069
＜	2014	1，631	716	72	788	468	375	843	16	\＄11，688
$\stackrel{ }{-}$	2015	1，592	740	43	783	420	389	809	17	\＄11，982
－	2016	1，531	685	33	718	411	402	813	18	\＄11，560
	2017	1，596	745	41	786	409	401	810	18	\＄10，573
22										Source：GAMA

1.6 U.S.-Manufactured General Aviation Airplane Billings (in Millions of Dollars) by Type (2000-2017)

Year	Grand Total	Single-Engine Piston	Multi-Engine Piston	Total Piston	Turboprop	Business Jet	Total Turbine
2000	8,558	n/a	n/a	446	934	7,178	8,112
2001	8,641	n/a	n/a	471	742	7,428	8,170
2002	7,719	n/a	n/a	389	487	6,843	7,330
2003	6,434	n/a	n/a	440	411	5,583	5,994
2004	6,816	n/a	n/a	568	555	5,693	6,248
2005	8,667	n/a	n/a	712	749	7,205	7,954
2006	10,367	n/a	n/a	722	853	8,792	9,645
2007	11,941	n/a	n/a	712	1,001	10,227	11,228
2008	13,348	n/a	n/a	836	1,172	11,340	12,513
2009	9,082	n/a	n/a	389	872	7,821	8,693
2010	7,875	n/a	n/a	368	724	6,782	7,506
2011	8,266	n/a	n/a	368	831	7,068	7,898
2012	8,017	n/a	n/a	374	867	6,776	7,643
2013	11,069	n/a	n/a	456	1,358	9,255	10,613
2014	11,688	n/a	n/a	484	1,316	9,888	11,204
2015	11,982	n/a	n/a	477	1,282	10,224	11,506
2016	11,560	n/a	n/a	511	1,180	9,869	11,049
2017	10,573	n/a	n/a	577	1,032	8,985	10,017

1.7 U.S.-Manufactured General Aviation Airplane Exports by Type and Billings (2000-2017)

Year	Single-Engine Piston	Multi-Engine Piston	Turboprop	Business Jet	Total Airplanes Exported		Billings Exported	
					Units	\% of Shipments	(in \$ Millions)	\% of Total Billings
2000	285	24	112	148	569	20.2\%	\$1,957.5	22.9\%
2001	175	42	118	170	505	19.2\%	\$2,380.6	27.5\%
2002	135	23	79	136	372	16.8\%	\$1,980.9	25.4\%
2003	168	22	52	94	336	15.7\%	\$1,218.2	18.9\%
2004	181	9	55	88	333	14.1\%	\$1,419.6	20.8\%
2005	301	18	66	172	557	19.5\%	\$2,585.9	29.8\%
2006	535	30	74	252	891	28.3\%	\$4,395.5	42.4\%
2007	665	33	131	313	1,142	34.8\%	\$4,587.0	38.4\%
2008	556	40	175	410	1,161	37.7\%	\$5,863.8	43.9\%
2009	341	15	121	255	732	46.2\%	\$4,612.7	50.8\%
2010	299	45	151	194	689	51.6\%	\$4,867.8	61.8\%
2011	249	50	121	112	486	36.3\%	\$4,585.8	55.5\%
2012	263	40	243	174	720	47.7\%	\$4,791.1	59.8\%
2013	255	49	245	142	691	42.8\%	\$5,616.9	50.7\%
2014	273	37	248	138	696	42.7\%	\$5,419.2	46.4\%
2015	170	23	203	128	524	32.9\%	\$5,431.2	45.3\%
2016	161	12	156	124	453	29.6\%	\$4,451.3	38.5\%
2017	193	11	210	127	541	33.9\%	\$4,347.9	41.1\%

Source: GAMA
1.8 European-Manufactured General Aviation Airplane Shipments by Type (2008-2017)

Year	Crand Total	Single-Engine Piston	Multi-Engine Piston	Total Piston	Turboprop	Business Jet	Total Turbine	Companies Reporting	Factory Net Billings (\$ Millions)
2008	579	223	85	308	190	81	271	6	\$3,966.6
2009	416	125	38	163	165	88	253	6	\$4,552.5
2010	380	98	41	139	133	108	241	6	\$5,556.0
2011	468	204	70	274	121	73	194	7	\$3,987 . 9
2012	446	231	28	259	112	75	187	8	\$4,063 . 3
2013	657	420	42	462	112	83	195	10	\$4,533.9
2014	722	449	71	520	131	71	202	10	\$3,825.3
2015	612	354	67	421	132	59	191	9	\$3,736.2
2016	580	277	96	373	157	50	207	9	\$3,008.6
2017	580	26	108	384	145	49	194	9	\$3,234.3

2.1 Canada—Registered Aircraft by Type and Weight Group (1983-2017)

Year	Number of Registered Aircraft by Type									By Weight Group		Total Aircraft
	Aeroplanes	Ultralights	Amateur-Builts	Helicopters	Gliders	Balloons	Gyroplanes	Airships	Ornithopters	$\leq 12,500 \mathrm{lbs}$	$12,500>$ lbs	
1983	22,354	1,282	n/a	1,410	560	177	116	n/a	n/a	n/a	n/a	25,899
1984	22,330	1,971	n/a	1,326	572	197	118	n/a	n/a	n/a	n/a	26,514
1985	22,231	2,376	n/a	1,276	582	219	117	n/a	n/a	n/a	n/a	26,801
1986	22,105	2,706	n/a	1,264	589	247	116	n/a	n/a	n/a	n/a	27,027
1987	22,270	2,946	n/a	1,299	602	279	121	n/a	n/a	n/a	n/a	27,517
1988	22,469	3,105	n/a	1,338	613	308	122	n/a	n/a	n/a	n/a	27,955
1989	22,463	3,212	n/a	1,366	614	339	127	n/a	n/a	n/a	n/a	28,121
1990	22,278	3,363	n/a	1,416	609	361	128	n/a	n/a	27,173	982	28,155
1991	21,973	3,477	n/a	1,433	601	384	135	n/a	n/a	23,553	981	28,003
1992	21,795	3,607	n/a	1,502	602	405	155	n/a	n/a	27,070	996	28,066
1993	21,452	3,744	n/a	1,533	597	424	162	n/a	n/a	26,977	935	27,912
1994	21,212	3,840	n/a	1,582	601	444	169	n/a	n/a	26,885	963	27,848
1995	21,169	3,956	n/a	1,605	601	440	166	n/a	n/a	26,914	1,023	27,937
1996	21,089	4,070	n/a	1,643	592	440	168	n/a	n/a	26,919	1,084	28,002
1997	20,985	4,208	n/a	1,655	587	450	169	n/a	n/a	26,862	1,192	28,054
1998	20,830	4,305	2,457	1,676	592	440	174	n/a	n/a	26,809	1,208	28,017
1999	20,768	4,346	2,540	1,711	596	442	181	2	1	26,783	1,264	28,047
2000	25,256	4,467	2,621	1,753	600	444	186	2	1	26,922	1,320	28,242
2001	25,435	4,584	2,709	1,798	613	453	190	3	1	27,171	1,322	28,493
2002	25,650	4,746	2,778	1,831	617	453	189	3	1	27,374	1,370	28,744
2003	25,902	4,922	2,895	1,894	674	450	188	3	1	27,752	1,360	29,112
2004	26,335	5,123	2,996	1,940	686	459	189	4	1	28,166	1,448	29,614
2005	26,870	5,339	3,124	2,019	683	475	192	4	1	28,745	1,499	30,244
2006	27,512	5,568	3,255	2,145	687	478	191	4	1	29,422	1,596	31,018
2007	28,195	5,745	3,380	2,317	695	481	192	5	1	30,223	1,663	31,886
2008	29,043	5,985	3,514	2,504	703	486	191	5	1	31,154	1,779	32,933
2009	29,567	6,184	3,639	2,576	715	479	190	5	1	31,709	1,824	33,533
2010	30,118	6,396	3,748	2,658	713	486	194	5	1	32,330	1,845	34,175
2011	30,805	6,585	3,885	2,728	720	490	198	5	1	32,986	1,961	34,947
2012	31,341	6,803	3,984	2,776	722	500	195	5	1	33,563	1,977	35,540
2013	31,780	6,973	4,074	2,849	726	511	206	5	1	34,050	2,028	36,078
2014	32,045	7,125	4,141	2,871	725	517	214	1	1	34,310	2,064	36,374
2015	32,127	7,246	4,185	2,853	721	516	222	0	1	34,359	2,081	36,440
2016	32,138	7,355	4,213	2,836	717	517	227	0	1	34,355	2,081	36,436
2017	32,279	7,459	4,248	2,830	723	523	232	0	1	34,473	2,115	36,588

Source: Transport Canada and Canadian Civil Aircraft Registry, www.tc.gc.ca

2.2 Active U.S. General Aviation and On-Demand Part 135 Aircraft by Primary Use and Aircraft Type (2016)

		General Aviation FAR Part 91 Use												On-Demand FAR Part 135 Use		
Aircraft Type	Total Active (77.5\% of $273,211)$	Personal/ Recreational	Business (w/o crew)	Business (with crew)	Instructional	Aerial Apps.	Aerial Obs.	Other Aerial App.	External Load	Other Work	Sightseeing	Air Medical	Other	Air Taxi	Air Tours	Air Medical
Total All Aircraft	211,793	142,105	16,177	9,770	15,826	3,206	6,101	819	304	1,331	1,126	411	6,086	5,828	585	2,119
\% Std. Error	1.4\%	2.0\%	1.6\%	1.0\%	1.6\%	1.0\%	1.2\%	0.9\%	0.9\%	1.4\%	1.4\%	1.2\%	1.0\%	0.7\%	0.8\%	0.6\%
Piston Total	142,638	106,236	12,647	1,196	12,593	998	3,503	172	-	657	219	260	2,321	1,653	124	60
One-Engine Piston	129,652	99,178	10,181	604	11,327	952	3,247	99	-	600	210	184	1,986	927	107	51
Two-Engine Piston	12,986	7,058	2,466	592	1,266	46	256	73	-	58	9	76	335	726	18	9
Turboprop Total	9,779	1,489	1,356	1,977	84	1,580	500	249	-	235	2	26	370	1,549	10	351
One-Engine Turboprop	4,566	721	639	414	41	1,555	34	136	-	74	2	19	240	605	3	84
Two-Engine Turboprop	5,212	768	717	1,563	43	25	467	114	-	161	-	6	130	944	8	267
Business Jet	13,751	1,639	1,234	6,241	103	47	4	35	-	103	-	43	2,043	2,093	-	165
Rotorcraft Total	10,577	1,626	319	261	1,836	543	2,034	351	304	127	178	77	522	511	344	1,543
Piston Total	3,344	1,027	194	23	1,306	230	216	6	4	12	152	-	34	63	77	-
Turbine Total	7,232	599	125	238	530	312	1,818	345	300	115	27	77	488	448	267	1,543
- One-Engine Turbine	5,467	556	106	113	427	285	1,698	289	182	87	19	25	169	301	264	945
- Two-Engine Turbine	1,766	42	19	125	103	27	120	56	118	28	8	52	319	147	3	598
Gliders	1,789	1,431	-	-	311	-	2	-	-	2	28	-	14	-	-	-
Lighter-Than-Air	3,197	2,214	11	-	177	-	-	-	-	28	671	-	-	-	96	-
Experimental Total	27,585	25,473	571	91	376	36	43	12	-	177	27	5	750	20	5	-
Amateur-Built	20,490	19,387	472	79	214	-	11	2	-	79	2	-	243	-	3	-
Exhibition	2,015	1,664	19	-	32	7	7	3	-	27	4	5	248	-	-	-
Exp. Light-Sport	4,264	3,924	23	2	89	-	2	-	-	56	12	-	156	-	-	-
Other Experimental	816	497	57	10	42	29	24	7	-	15	10	-	103	20	2	-
Special Light-Sport	2,478	1,998	39	4	346	2	14	-	-	2	-	-	66	2	6	-
															Source	FAA Survey

2.3 U.S. General Aviation and On-Demand Part 135 Total Hours Flown by Use and Aircraft Type (2016)

		General Aviation FAR Part 91 Use												On-Demand FAR Part 135 Use		
Aircraft Type	Total Hours	Personal/ Recreational	Business (w/o crew)	Business (with crew)	Instructional	Aerial Apps.	Aerial Obs.	Other Aerial App.	External Load	Other Work	Sightseeing	Air Medical	Other	$\begin{aligned} & \text { Air } \\ & \text { Taxi } \end{aligned}$	Air Tours	Air Medical
Total All Aircraft	24,833,264	7,868,484	1,778,840	2,551,078	4,885,521	868,701	1,433,525	158,731	150,554	428,750	167,177	97,637	944,749	2,371,199	374,591	753,727
\% Std. Error	1.0\%	1.2\%	2.4\%	3.3\%	3.1\%	6.8\%	5.4\%	10.8\%	15.8\%	14.0\%	9.0\%	15.6\%	3.7\%	4.3\%	13.4\%	6.5\%
Piston Total	13,548,135	5,988,191	1,258,855	214,113	4,064,459	142,636	738,424	22,800	-	132,162	60,571	42,530	310,232	508,860	57,031	7,147
One-Engine Piston	11,865,206	5,536,772	1,023,221	134,592	3,591,255	133,613	664,590	14,229	-	120,523	57,433	24,996	267,215	238,330	53,617	-
Two-Engine Piston	1,682,929	451,419	235,634	79,521	473,203	9,022	73,833	8,571	-	11,638	3,139	17,534	43,017	270,530	3,413	2,453
Turboprop Total	2,707,093	196,640	196,176	420,551	48,105	554,427	66,078	66,008	-	175,750	-	15,462	62,619	753,157	4,065	146,702
One-Engine Turboprop	1,375,821	95,806	95,865	107,231	15,067	550,663	9,322	38,528	-	34,787	-	12,142	28,665	346,451	2,128	37,903
Two-Engine Turboprop	1,331,271	100,834	100,311	313,320	33,038	3,764	56,756	27,480	-	140,962	-	-	33,953	406,705	-	108,799
Business Jet	3,846,721	332,660	224,096	1,834,277	24,732	30,386	-	7,744	-	37,800	-	17,225	402,992	866,398	-	67,473
Rotorcraft Total	3,128,069	105,376	33,937	74,753	619,458	129,127	619,721	61,505	150,366	55,281	64,657	22,294	119,896	234,048	305,276	532,374
Piston Total	780,205	71,847	16,053	4,498	444,715	38,011	56,005	3,462	3,195	2,190	52,377	-	14,059	28,152	45,613	-
Turbine Total	2,347,864	33,529	17,883	70,255	174,743	91,117	563,715	58,043	147,171	53,091	12,81	22,266	105,837	205,896	259,663	532,374
- One-Engine Turbine	1,809,769	29,600	14,089	40,874	143,744	77,908	501,857	49,900	108,735	44,423	11,361	8,699	68,554	144,770	257,955	307,299
- Two-Engine Turbine	538,095	3,929	3,794	29,381	30,999	-	61,858	8,143	38,436	8,668	-	13,567	37,283	61,126	-	225,075
Gliders	86,810	61,870	-	-	20,481	-	-	-	-	-	3,589	-	-	-	-	-
Lighter-Than-Air	106,170	56,837	-	-	-	-	-	-	-	-	33,789	-	-	-	-	-
Experimental Total	1,223,638	1,012,106	61,829	-	41,744	-	\cdot	-	-	-	\cdot	-	41,846	-	-	-
Amateur-Built	889,837	793,693	55,169	-	17,554	-	-	-	-	-	-	-	9,512	-	-	-
Exhibition	88,634	70,218	-	-	2,917	-	-	-	-	-	-	-	10,066	-	-	-
Exp. Light-Sport	152,443	126,753	-	-		-	-	-	-	-	-	-	13,761	-	-	-
Other Experimental	92,724	21,442	5,010	-	16,766	9,605	5,138	-	-	-	-	-	8,507	-	-	-
Special Light-Sport	186,627	114,803	3,445	468	59,360	.	1,356	-	-	-	328	-	5,663	-	-	\cdot

2.4 Active U.S. General Aviation and On-Demand Part 135 Aircraft by Type (1996-2016) and Forecast (2017-2026)

		Airplane			Rotorcraft		Balloons, Dirigibles, Gliders	Experimental	Light-Sport Aircraft		
Year	Total Aircraft	Piston	Turboprop	Business Jet	Piston	Turbine			Total	Experimental	Special
1996	191,129	153,551	5,716	4,424	2,507	4,063	4,244	16,625	-	-	-
1997	192,414	156,056	5,619	5,178	2,259	4,527	4,092	14,680	-	-	-
1998	204,710	162,963	6,174	6,066	2,545	4,881	5,580	16,502	-	-	-
1999	219,464	171,923	5,679	7,120	2,564	4,884	6,765	20,528	-	-	-
2000	217,534	170,513	5,762	7,001	2,680	4,470	6,701	20,407	-	-	-
2001	211,446	163,314	6,596	7,787	2,292	4,491	6,545	20,421	-	-	-
2002	211,244	161,087	6,841	8,355	2,351	4,297	6,377	21,936	-	-	-
2003	209,708	160,938	7,689	7,997	2,123	4,403	6,008	20,550	-	-	-
2004	219,426	165,189	8,379	9,298	2,315	5,506	5,939	22,800	-	-	-
2005	224,352	167,608	7,942	9,823	3,039	5,689	6,454	23,627	170	-	-
2006	221,942	163,743	8,063	10,379	3,264	5,895	6,278	23,047	1,273	-	-
2007	231,607	166,907	9,514	10,385	2,769	6,798	5,940	23,228	6,066	-	-
2008	228,663	163,013	8,906	11,042	3,498	6,378	5,652	23,364	6,811	-	-
2009	223,877	157,123	9,055	11,268	3,499	6,485	5,480	24,419	6,547	5,077	1,470
2010	223,370	155,419	9,369	11,484	3,588	6,514	5,684	24,784	6,528	4,878	1,650
2011E	220,453	152,597	9,523	11,650	3,411	6,671	5,681	24,275	6,645	n/a	n/a
2012	209,034	143,160	10,304	11,793	3,292	6,763	5,006	26,715	-	4,631	2,001
2013	199,927	137,655	9,619	11,637	3,137	6,628	4,278	24,918	-	4,157	2,056
2014	204,408	139,182	9,777	12,362	3,154	6,812	4,699	26,191	-	4,204	2,231
2015	210,030	141,141	9,712	13,440	3,286	7,220	4,941	27,922	-	3,942	2,369
2016	211,793	142,638	9,779	13,751	3,344	7,232	4,986	27,585	-	4,464	2,478
Forecast											
2017	209,800	138,915	9,285	14,100	3,380	7,510	4,955	28,970	-	-	2,685
2018	209,800	137,845	9,180	14,415	3,425	7,650	4,960	29,490	-	-	2,835
2019	209,780	136,785	9,110	14,760	3,470	7,785	4,960	29,910	-	-	3,000
2020	209,710	135,730	9,080	15,115	3,515	7,920	4,950	30,240	-	-	3,160
2021	209,725	134,650	9,075	15,480	3,560	8,055	4,950	30,640	-	-	3,315
2022	209,655	133,565	9,115	15,845	3,605	8,195	4,955	30,895	-	-	3,480
2023	209,605	132,455	9,185	16,210	3,650	8,335	4,955	31,175	-	-	3,640
2024	209,655	131,340	9,295	16,585	3,695	8,480	4,955	31,510	-	-	3,795
2025	209,735	130,230	9,420	16,965	3,740	8,625	4,955	31,835	-	-	3,965
2026	209,735	129,100	9,570	17,345	3,785	8,775	4,970	32,065	-	-	4,125
Average Annual Growth											
2017-26	-0.1\%	-1.0\%	-0.2\%	2.3\%	1.2\%	2.0\%	0.0\%	1.5\%	\cdot	\bullet	5.2\%

Key changes to survey methodology by year:

- 2009: The FAA began publishing data for Special Light-Sport Aircraft separately.

2004: The survey coverage was expanded for turbine airplanes and rotorcraft, - 2011: Data is estimated, because no data was published by the FAA.
accounting for part of the increase in hours.
2007: The estimate of Light-Sport Aircraft increased significantly due to 2012: The general aviation survey results includes "Experimental Light-Sport" data in the "Experimental" category.

The Federal Aviation Administration's (FAA) annual general aviation survey categorizes the uses of general aviation aircraft as follows:

- personal (and recreational) flying;
- business transportation without a paid crew (that is, an individual using an aircraft for business without a paid, professional crew); and
- business transportation with a paid, professional crew (previously called "corporate").

In addition, the following forms of business operations are included in general aviation operations:

- instructional flying (operations under the supervision of a flight instructor including solo flight);
- sight-seeing (commercial sight-seeing operations under FAR Part 91); and
- on-demand FAR Part 135 operations including air taxi (that is, charter), air tours, and airmedical operations.
2.5 U.S. General Aviation and On-Demand Part 135 Estimated Hours Flown (in Thousands) by Type (1980-2016)
and Forecast (2017-2026) and Forecast (2017-2026)

		Airplane			Rotorcraft		Balloons, Dirigibles, Cliders	Experimental	Light-Sport Aircraft		
Year	Total Hours	Piston	Turboprop	Business Jet	Piston	Turbine			Total	Experimental	Special
1980	41,016	34,747	2,240	1,332	736	1,603	359	-	-	-	-
1981	40,704	34,086	2,155	1,387	930	1,754	391	-	-	-	-
1982	36,457	29,950	2,168	1,611	579	1,771	379	-	-	-	-
1983	35,249	28,911	2,173	1,473	572	1,700	420	-	-	-	-
1984	36,119	29,194	2,506	1,566	592	1,903	358	-	-	-	-
1985	31,456	25,666	1,921	1,498	521	1,468	382	-	-	-	-
1986	31,782	24,805	2,661	1,527	742	1,682	364	-	-	-	-
1987	30,883	24,969	2,010	1,411	602	1,506	384	-	-	-	-
1988	31,114	24,291	2,195	1,554	533	1,974	568	-	-	-	-
1989	32,332	24,907	2,892	1,527	692	1,918	396	-	-	-	-
1990	32,096	25,832	2,319	1,396	716	1,493	341	-	-	-	-
1991	29,862	23,919	1,628	1,071	549	2,214	483	-	-	-	-
1992	26,747	21,417	1,582	1,076	423	1,842	407	-	-	-	-
1993	24,455	19,321	1,192	1,212	391	1,308	338	785	-	-	-
1994	24,092	18,823	1,142	1,238	369	1,408	388	724	-	-	-
1995	26,612	20,251	1,490	1,455	337	1,624	261	1,194	-	-	-
1996	26,909	20,091	1,768	1,543	591	1,531	227	1,158	-	-	-
1997	27,713	20,744	1,655	1,713	344	1,740	192	1,327	-	-	-
1998	28,100	20,402	1,765	2,226	430	1,912	295	1,071	-	-	-
1999	31,231	22,529	1,797	2,721	552	2,077	309	1,246	-	-	-
2000	29,960	21,493	1,986	2,648	530	1,661	362	1,280	-	-	-
2001	27,017	19,194	1,773	2,654	474	1,479	287	1,157	-	-	-
2002	27,040	18,891	1,850	2,745	454	1,422	333	1,345	-	-	-
2003	27,329	19,013	1,922	2,704	448	1,687	263	1,292	-	-	-
2004	28,126	18,142	2,161	3,718	514	2,020	249	1,322	-	-	-
2005	26,982	16,434	2,106	3,771	617	2,439	267	1,339	9	-	-
2006	27,705	16,525	2,162	4,077	918	2,528	211	1,218	66	-	-
2007	27,852	16,257	2,661	3,938	704	2,541	215	1,275	260	-	-
2008	26,009	15,074	2,457	3,600	751	2,470	209	1,155	293	-	-
2009	23,763	13,634	2,215	3,161	755	2,248	178	1,286	286	171	115
2010	24,802	13,979	2,325	3,375	794	2,611	181	1,226	311	173	138
2011E	24,569	13,626	2,463	3,407	757	2,654	181	1,203	278	n/a	n/a
2012	24,403	13,206	2,733	3,418	731	2,723	180	1,243	-	151	169
2013	22,876	12,352	2,587	3,488	636	2,312	135	1,191	-	135	173
2014	23,271	11,967	2,613	3,881	818	2,424	159	1,244	-	142	165
2015	24,142	12,825	2,538	3,837	798	2,496	162	1,295	-	132	191
2016	24,833	13,548	2,707	3,847	780	2,348	193	1,224	-	152	187
Forecast											
2017	24,753	12,604	2,538	4,445	777	2,636	163	1,372	-	-	218
2018	24,847	12,350	2,539	4,655	793	2,705	163	1,411	-	-	232
2019	25,000	12,157	2,542	4,863	809	2,773	163	1,446	-	-	246
2020	25,174	11,992	2,545	5,064	828	2,843	163	1,479	-	-	260
2021	25,375	11,865	2,554	5,250	848	2,905	163	1,515	-	-	275
2022	25,589	11,746	2,570	5,437	869	2,971	163	1,544	-	-	290
2023	25,794	11,638	2,593	5,597	886	3,037	163	1,575	-	-	305
2024	26,025	11,551	2,626	5,750	902	3,105	164	1,608	-	-	320
2025	26,239	11,451	2,662	5,894	919	3,174	164	1,640	-	-	335
2026	26,451	11,354	2,706	6,039	934	3,235	164	1,669	-	-	351
Average Annual Growth											
2017-26	0.6\%	-1.8\%	0.0\%	4.6\%	1.8\%	3.3\%	-1.6\%	3.2\%	\cdot	\cdot	6.5\%

Key changes to survey methodology by year:
-2003: Aircraft operating in commuter operations were excluded.
-2004: The survey coverage was expanded for turbine airplanes and rotorcratt
accounting for part of the increase in hours.

- 2007: The estimate of Light-Sport Aircraft increased significantly due to

2009: The FAA began publishing data for Special Light-Sport Aircraft separately.
011: Data is estimated, because no data was published by the FAA.
2012: The general aviation survey results includes "Experimental Light-Sport"
data in the "Experimental" category.
2.6 Active U.S. General Aviation and On-Demand FAR Part 135 Average Hours Flown Per Aircraft by Year (2000-2016)

Year	All Aircraft	Airplane			Rotorcraft		Balloons, Dirigibles, Cliders	Experimental	Light-Sport Aircraft	
		Piston	Turboprop	Business Jet	Piston	Turbine			Total	Special
2000	142	130	353	393	198	398	56	64	-	-
2001	138	128	290	341	254	347	50	59	-	-
2002	128	117	270	329	193	331	53	61	-	-
2003	130	118	250	338	211	383	44	63	-	-
2004	128	110	258	400	222	367	42	58	-	-
2005	120	98	265	384	203	429	41	57	55	-
2006	125	101	268	393	281	429	34	53	52	-
2007	120	97	280	379	254	374	36	55	43	-
2008	114	93	276	326	215	387	37	50	43	-
2009	106	87	245	281	216	347	32	53	44	78
2010	111	90	248	294	221	401	32	50	48	84
2011E	111	89	259	292	222	398	32	50	42	n/a
2012	117	92	265	290	222	403	36	47	-	85
2013	114	90	269	300	203	349	32	48	-	84
2014	114	86	267	314	260	356	34	48	-	74
2015	115	91	261	286	243	346	33	46	-	81
2016	117	95	277	280	233	325	39	44	-	75

Data for 2011 was estimated, because no survey data is available from the FAA.
Source: FAA Survey
2.7 U.S. Experimental Aircraft Fleet and Flight Hours (in Thousands) (2000-2016)

Year	Aircraft Fleet						Hours Flown					
	AmateurBuilt	Exhibition	Experimental Light-Sport	Other	Total Experimental	$\%$ of GA Fleet	AmateurBuilt	Exhibition	Experimental Light-Sport	Other	Total Experimental	\% of GA Hours
2000	16,739	1,973	-	1,694	20,406	9.4\%	887	113	-	279	1,279	4.3\%
2001	16,736	2,052	-	1,633	20,421	9.7\%	794	102	-	261	1,157	4.3\%
2002	18,168	2,190	-	1,578	21,936	10.4\%	976	127	-	242	1,345	5.0\%
2003	17,028	2,031	-	1,491	20,550	9.8\%	963	103	-	226	1,292	4.7\%
2004	19,165	2,070	-	1,565	22,800	10.4\%	990	116	-	216	1,322	4.7\%
2005	19,817	2,120	-	1,691	23,628	10.5\%	987	113	-	239	1,339	5.0\%
2006	19,316	2,103	-	1,629	23,048	10.4\%	899	103	-	216	1,218	4.4\%
2007	19,538	2,101	-	1,589	23,228	10.0\%	896	102	-	277	1,274	4.6\%
2008	19,767	2,096	-	1,501	23,364	10.2\%	872	92	-	192	1,155	4.4\%
2009	20,794	2,063	5,077	1,562	29,496	13.2\%	983	88	171	215	1,457	6.1\%
2010	21,270	2,029	4,878	1,485	29,662	13.3\%	911	98	173	217	1,399	5.6\%
2011	n/a											
2012	18,843	1,923	4,631	1,317	26,715	12.8\%	847	88	151	157	1,243	5.1\%
2013	17,503	1,908	4,157	1,350	24,918	12.5\%	785	78	135	193	1,191	5.2\%
2014	18,873	1,893	4,204	1,221	26,191	12.8\%	834	79	142	189	1,244	5.3\%
2015	21,195	1,966	3,942	820	27,922	13.3\%	1,000	76	132	87	1,295	5.4\%
2016	20,490	2,015	4,264	816	27,585	13.0\%	890	89	152	93	1,224	4.9\%

2.8 Total Fuel Consumed and Average Fuel Consumption Rate by Aircraft Type (2016)

Fuel Type	Fixed-Wing			Rotorcraft		Other Aircraft	Experimental	Special Light-Sport	Total All Aircraft
	Piston	Turboprop	Turbojet	Piston	Turbine				
Jet Fuel									
Avg. Rate (GPH)	32.2	76.7	290.7	11.9	48.3	15.0	44.3	-	152.3
Estimated Fuel Use (Thousand Gallons)	2,569.4	205,475.4	1,116,520.7	6,016.8	113,359.6	0.5	$1,710.7$	-	1,445,655.3
\% Standard Error	10.5	1.5	1.3	3.0	1.4	0.0	14.2	-	1.1
100 Low-Lead									
Avg. Rate (GPH)	13.2	34.9	-	13.6	-	-	12.2	5.4	13.1
Estimated Fuel Use (Thousand Gallons)	172,664.7	970.0	-	3,749.1	-	-	$9,785.1$	411.4	187,836.2
\% Standard Error	1.7	11.9	-	4.5	-	-	15.8	3.5	1.8
Automotive Gasoline									
Avg. Rate (GPH)	9.1	9.2	-	6.0	-	1.7	4.9	5.3	6.8
Estimated Fuel Use (Thousand Gallons)	3,003.3	3.7	-	3.1	-	9.5	1,522.6	575.2	5,123.3
\% Standard Error	11.3	9.5	-	6.8	-	28.1	4.4	4.9	4.7
Total Fuel Use									
Avg. Rate (GPH)	13.2	76.3	290.3	12.5	48.3	18.0	11.2	5.3	66.4
Estimated Fuel Use (Thousand Gallons)	178,237.4	206,459.1	1,116,639.5	9,769.0	113,364.3	2,527.1	13,172.1	988.8	1,641,157.3
\% Standard Error	1.7	1.5	1.3	2.7	1.4	9.6	11.8	3.2	2.2
Some data points are suppressed or contain no reports of a type of aircraft using that fuel The FAA no longer publishes data for 100 Octane and Other Fuel.									

2.9 U.S. General Aviation Fuel Consumption (2000-2016)

Year	Airplane				Rotorcraft		Experimental and Other Aircraft	Light-Sport	Total Fuel Consumed		
	Piston		Turbine		Piston	Turbine			Avgas	Jet Fuel	Total
	Single-Engine	Multi-Engine	Turboprop	Business Jet							
2000	200.8	108.4	176.3	736.7	8.4	59.0	15.2	-	332.8	972.0	1,304.8
2001	180.4	76.4	149.1	726.7	7.2	42.6	15.3	-	279.2	918.3	1,197.6
2002	177.9	74.2	152.3	745.5	6.8	40.5	17.8	-	276.7	938.3	1,215.0
2003	181.8	66.7	154.5	729.0	6.8	48.8	17.1	-	272.4	932.3	1,204.7
2004	167.5	80.1	167.0	1,004.9	7.9	59.0	17.5	-	272.9	1,230.9	1,503.8
2005	173.1	89.7	196.1	1,181.3	14.6	149.2	17.7	-	295.0	1,526.7	1,821.7
2006	164.9	79.9	190.1	1,303.9	16.7	148.6	21.6	0.3	283.4	1,642.6	1,926.0
2007	157.6	83.0	205.2	1,148.0	9.3	132.4	22.6	1.2	273.6	1,485.6	1,759.2
2008	143.0	69.5	230.4	1,313.2	10.7	162.1	23.3	1.5	248.1	1,705.7	1,953.8
2009	132.3	57.1	208.7	1,104.6	10.7	133.6	25.8	1.4	227.4	1,447.0	1,674.4
2010	133.1	53.9	187.1	1,122.9	10.7	124.8	21.6	1.5	220.7	1,434.8	1,655.6
2011E	129.9	52.9	195.3	1,124.6	10.3	136.4	21.5	1.4	216.0	1,456.3	1,672.3
2012	126.6	51.8	190.7	1,232.2	10.7	119.5	21.7	1.5	212.3	1,542.4	1,754.7
2013	117.2	53.9	188.6	945.0	8.8	126.0	16.5	0.9	197.3	1,259.6	1,456.9
2014	120.0	48.2	198.8	1,135.2	11.0	132.3	29.5	0.8	209.5	1,466.4	1,676.0
2015	128.4	40.4	191.4	1,062.9	10.2	128.3	15.4	1.2	195.6	1,382.6	1,578.2
2016	128.9	42.9	189.5	1,150.2	10.0	131.2	25.6	1.3	208.6	1,470.9	1,679.5

FIGURE 2.1 Refinery and Blender Net Production of Aviation Gasoline (1990-2016)

2.10 U.S. Refinery and Blender Net Production of Aviation Gasoline (1990-2016) (in Thousand Barrels Per Day)

Year	Year 0	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8	Year 9
1990	23	22	22	21	22	21	20	20	20	20
2000	18	18	17	16	17	17	18	16	15	14
2010	15	15	13	12	12	11	11	-	-	-

Source: U.S. Energy Information Administration

2.11 Average Age of Registered U.S. General Aviation Fleet (2009-2016)

Aircraft Type	Engine Type	Average Age in 2009 in Years	Average Age in 2010 in Years	Average Age in 2011 in Years	Average Age in 2012 in Years	Average Age in 2013 in Years	Average Age in 2014 in Years	Average Age in 2015 in Years	Average Age in 2016 in Years
Single-Engine	Piston	-	-	-	-	-	-	-	45.7
	Turboprop	16.1	15.2	n/a	14.9	12.5	13.5	13.5	13.2
	Jet	44.0	44.1	n/a	n/a	n/a	n/a	n/a	n/a
	Helicopter - Piston	-	n/a	n/a	20.8	17.1	21.4	21.4	21.0
	Helicopter - Turbine	-	-	n/a	22.9	22.3	22.1	22.1	22.4
Multi-Engine	Piston	-	-	-	-	-	-	-	43.2
	Turboprop	28.0	27.0	n/a	26.1	25.2	27.6	27.6	28.4
	Jet	17.0	16.2	n/a	15.3	14.7	15.8	15.8	15.3
	Helicopter - Turbine	-	-	-	17.5	14.7	17.6	17.6	18.9
All Aircraft		39.5	37.3	n/a	35.1	33.2	36.7	36.7	37.2

2.12 U.S. General Aviation Operations (in Thousands) at FAA and Contract Towers (1992-2017)

Year	General Aviation Operations at Towers								Grand Total
	FAA Control Towers				Contract Towers				
	Total	Itinerant \& Overflight	Local	Number of Towers	Total	Itinerant \& Overflight	Local	Number of Towers	
1992	36,945	21,281	15,664	n/a	1,409	767	642	n/a	38,355
1993	35,228	20,377	14,851	n/a	1,373	760	613	n/a	36,601
1994	34,092	20,208	14,484	n/a	1,561	855	706	n/a	36,254
1995	32,265	18,886	13,379	n/a	3,661	1,974	1,687	n/a	35,927
1996	29,250	17,575	11,675	n/a	6,049	3,249	2,801	n/a	35,298
1997	28,232	17,097	11,135	n/a	8,601	4,572	4,029	n/a	36,833
1998	28,522	17,157	11,365	n/a	10,118	5,240	4,877	n/a	38,046
1999	29,110	17,422	11,688	n/a	10,890	5,597	5,292	n/a	40,000
2000	27,002	16,286	10,717	n/a	12,876	6,558	6,318	n/a	39,879
2001	24,784	14,949	9,835	266	12,843	6,484	6,359	206	37,627
2002	24,092	14,553	9,539	n/a	13,562	6,898	6,634	n/a	37,653
2003	22,598	13,577	9,021	n/a	12,926	6,654	6,272	n/a	35,524
2004	21,762	13,190	8,572	n/a	13,205	6,817	6,388	n/a	34,968
2005	20,705	12,430	8,275	n/a	13,456	6,885	6,571	n/a	34,161
2006	19,728	11,897	7,830	n/a	13,392	6,844	6,549	n/a	33,120
2007	19,367	11,616	7,751	n/a	13,768	6,961	6,807	n/a	33,135
2008	18,336	10,828	7,509	264	12,953	6,540	6,413	239	31,289
2009	17,429	10,770	6,659	264	12,156	6,585	5,571	244	29,585
2010	16,741	10,430	6,310	264	11,837	6,517	5,319	244	28,577
2011	16,324	10,206	6,118	264	11,737	6,374	5,363	248	28,061
2012	16,265	10,111	6,154	264	11,878	6,479	5,399	250	28,143
2013	16,027	9,857	6,170	264	11,998	6,438	5,560	252	28,025
2014	15,791	9,707	6,084	264	11,951	6,356	5,595	252	27,742
2015	15,544	9,449	6,096	264	12,024	6,441	5,584	252	27,569
2016	15,554	9,380	6,174	264	11,990	6,535	5,455	252	27,544
2017E	15,564	9,280	6,284	264	12,112	6,560	5,552	254	27,675

$E=$ Estimated
Facilities includes Control Towers, TRACONs, CERAPs and RAPCONs.
Traffic Count for GA Operation Data are provided by OPSNET.
2.13 Summary of U.S. General Aviation Operations and Contacts (in Thousands) at FAA Facilities (2001-2017)

	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016E	2017F
GA IFR Aircraft Handled at FAA Air Route Traffic Control Centers	8,024.0	8,180.7	7,999.8	8,350.4	8,367.7	8,197.0	8,294.3	7,670.7	6,331.6	6,550.3	6,557.3	6,472.1	6,439.1	6,741.0	7,007.0	7,300.6	7,428.0
GA Instrument Operations at FAA \& Contract Facilities	19,705.5	19,655.8	18,629.8	18,619.5	17,985.9	-	-	-	-	-	-	-	-	-	-	-	-
GA Total TRACON Operations	19,274.9	19,212.5	18,094.2	18,006.8	17,388.9	17,005.3	16,747.4	15,763.0	14,151.1	13,863.6	13,503.1	13,423.6	13,047.7	13,017.6	13,075.7	13,089.7	13,092.8
Total Aircraft Contacts at FSS	2,196.0	2,170.0	2,050.0	1,976.0	-	-	-	-	-	-	-	-	-	-	-	-	-
$E=$ Estimated. $F=$ Forecast. GA Total TRACON Operations were titled "GA Instrument Operations Facilties include Control Towers, TRACONs, CERAPs, and RAPCONs. at Airorts with FAA Traffic Control Facilities" in previous publications. Traffic Count for GA Operation Data provided by ATADS. FAA suspended tracking of IFR operations at Contract Facilities in 2005. FAA suspended tracking of Flight Service Station (FSS) contacts in 2004.																	

FIGURE 2.2 Worldwide Turbine Business Airplane Fleet (2000-2017)

FIGURE 2.3 Worldwide Turbine and Piston Helicopter Fleet (2007-2017)

FIGURE 2.5 Fractional Aircraft and Share Owners (2000-2017)

[^0]
3.1 Austria—Number of Aircraft by Type (2015-2017)

Year	Fixed-wing Aeroplanes					Rotorcraft		Balloons and Airships	Cliders and Motor Cliders	Gyrocopters	UAS	Total Aircraft
	5,700 kg and Below			Above 5	5,700 kg	Single-Engine	Multi-Engine					
2015	805				292	100	54	n/a	176	7	-	1,434
2016	792			303		104	64	n/a	174	7	2	1,446
	Annex II (including Ultralights)	$450 \mathrm{~kg}-5,700 \mathrm{~kg}$		Above 5,700 kg								
		Single-Engine	Multi-Engine	Turboprops	Business Jets							
2017	11	680	111	2	155	107	92	n/a	170	7	-	1,335

The 2017 data does not include aircraft used by airlines.
Source: Austrocontrol, www.austrocontrol.at (Österreichisches Luftfahrzeugregister) and GAMA analysis

3.2 Belgium—Number of General Aviation Aircraft by Type (2017)

Year	Fixed-wing Aeroplanes					Rotorcraft		Balloons and Airships	Cliders and Motor Cliders	Gyrocopters	UAS	Total Aircraft
	Annex II (including Ultralights)	$450 \mathrm{~kg}-5,700 \mathrm{~kg}$		Above 5,700 kg								
		Single-Engine	Multi-Engine	Turboprops	Business Jets							
2017	747	351	43	10	41	128	29	206	402	-	1,472	3,429

Source: Belgian Civil Aviation Authority (SPF Mobilité et Transport), www.mobilit.belgium.be

3.3 Bosnia-Herzegovina-Number of General Aviation Aircraft by Type (2016-2017)

Year	Fixed-wing Aeroplanes					Rotorcraft		Balloons and Airships	Gliders and Motor Gliders	Gyrocopters	UAS	Total Aircraft
	Annex II (including Ultralights)	$450 \mathrm{~kg}-5,700 \mathrm{~kg}$		Above 5,700 kg		Single-Engine	Multi-Engine					
		Single-Engine	Multi-Engine	Turboprops	Business Jets							
2016	5	31	4	0	2	4	0	0	32	2	0	80
2017	6	31	4	0	2	4	0	0	34	3	0	84

Source: Bosnia and Herzegovina Directorate of Civil Aviation (http://www.bhdca.gov.ba) and GAMA analysis

3.4 Bulgaria—Number of General Aviation Aircraft by Type (2017)

Year	Fixed-wing Aeroplanes					Rotorcraft		Balloons and Airships	Cliders and Motor Cliders	Gyrocopters	UAS	Total Aircraft
	Annex II (including Ultralights)	$450 \mathrm{~kg}-5,700 \mathrm{~kg}$		Above 5,700 kg			M					
		Single-Engine	Multi-Engine	Turboprops	Business Jets	Sing	MultiEngine					
2017	18	138	9	11	13	16	10	4	4	3	n/a	226

3.5 Croatia—Number of Aircraft by Type (2015-2017)

Year	Fixed-wing Aeroplanes					Rotorcraft		Balloons and Airships	Cliders and Motor Cliders	Gyrocopters	UAS	Total Aircraft
	Annex II (including Ultralights)	$450 \mathrm{~kg}-5,700 \mathrm{~kg}$		Above 5,700 kg		Single-Engine	Multi-Engine					
		Single-Engine	Multi-Engine	Turboprops	Business Jets							
2015	126	153		1		12	4	20	60	2	n/a	378
2016	116	157		3		19		19	69	3	n/a	386
2017	122	85	19	6	12	11	6	10	58	2	n/a	331

3.6 Cyprus—Number of General Aviation Aircraft by Type (2014-2017)

Year	Fixed-wing Aeroplanes					Rotorcraft		Balloons and Airships	Cliders and Motor Cliders	Gyrocopters	UAS	Total Aircraft
	Annex II (including Ultralights)	$450 \mathrm{~kg}-5,700 \mathrm{~kg}$		Above 5,700 kg								
		Single-Engine	Multi-Engine	Turboprops	Business Jets	Sin	Mult-Engine					
2014	21	47	9	0	1	9	2	n/a	1	n/a	0	90
2015	23	53	12	0	1	11	2	n/a	1	n/a	1	104
2016	21	53	13	0	1	11	2	n/a	1	n/a	1	103
2017	27	55	13	0	1	11	3	n/a	1	n/a	1	112

3.7 Czech Republic—Number of Aircraft by Type (2010-2016)

Year	Fixed-wing Aeroplanes				Rotorcraft	Motor Cliders	Cliders	Balloons	Airships	Microlights	UAS	Total Aircraft
	5,700 kg and Below			Above 5,700 kg								
	Single-Eng		Multi-Engine									
2010	867			94	106	101	762	181	2	4,434	-	10,981
2011	915			84	118	101	838	191	2	4,745	-	11,739
2012	943			104	127	106	908	204	2	4,957	-	12,308
2013	940			86	134	109	956	209	2	5,199	-	12,834
2014	977			91	142	115	976	218	2	5,416	-	13,353
2015	964			85	153	130	987	233	2	5,649	-	13,852
2016	918		101	89	161	133	1,013	243	2	5,843	620	14,966

Drones having Unmanned Aircraft Special Authorisation issued by the Civil Aviation Authority of the Czech Republic

[^1]
3.8 Denmark—Number of Aircraft by Type (2012-2017)

Year	Fixed-wing Aeroplanes				Rotorcraft	Balloons	Motor Cliders	Cliders	Total Aircraft
	$\begin{gathered} 2,730 \mathrm{~kg} \\ \text { and Below } \end{gathered}$	$\begin{gathered} 2,730 \mathrm{~kg}- \\ 5,700 \mathrm{~kg} \end{gathered}$	$\begin{aligned} & 5,700 \mathrm{~kg}- \\ & 50,000 \mathrm{~kg} \end{aligned}$	$\begin{aligned} & 50,000 \mathrm{~kg}- \\ & 100,000 \mathrm{~kg} \end{aligned}$					
2012	684	43	127	48	125	66	136	330	1,559
2013	673	40	121	58	129	66	134	324	1,545
2014	670	36	135	61	124	70	136	314	1,546
2015	658	38	135	56	118	71	138	305	1,519
2016	646	39	129	53	114	73	135	304	1,493
2017	647	39	125	46	111	76	133	298	1,475

The Danish aircraft registry does not distinguish between aeroplanes used in scheduled commercial and general aviation operations.
Source: Danish Transport Authority (Trafikstyrelsen), www.trafikstyrelsen.dk

3.9 Estonia—Number of Aircraft by Type (2014-2017)

Source: Republic of Estonia Civil Aviation Administration (Lennuamet), www.ecaa.ee

3.10 Finland-Number of Aircraft by Type (2014-2016)

Year	Fixed-wing Aeroplanes		Rotorcraft and Gyrocopters	Gliders and Motor Cliders	Balloons and Airships	Microlights	Total Aircraft
	Aeroplanes	Airliners					
2014	552	109	111	390	54	318	1,534
2015	567	110	105	366	52	318	1,518
2016	578	84	99	359	52	324	1,496

[^2]
3.11 France—Number of General Aviation Aircraft by Type (2016-2017)

Year	Fixed-wing Aeroplanes							Rotorcraft			Cliders	Balloons and Airships	Gyrocopters	Amphibian	Total Aircraft
	Ultralights including Powered Parachutes	$450 \mathrm{~kg}-5,700 \mathrm{~kg}$			Above 5,700 kg										
		Piston Engine	Turboprops	Business Jets	Piston Engine	Turboprops	Business Jets	$\begin{aligned} & \text { Below } \\ & 450 \mathrm{~kg} \end{aligned}$	Piston Engine	Turbine					
2016	14,142	5,066	84	36	23	16	44	122	224	174	1,449	796	779	3	22,958
2017	14,462	5,104	104	40	13	17	64	123	252	188	1,579	793	789	3	23,531

The data was updated in April of each year.
Source: Direction de l'Aviation Civile, https://www.ecologique-solidaire.gouv.fr/politiques/aviation-civile

3.12 Georgia—Number of General Aviation Aircraft by Type (2017)

Year	Fixed-wing Aeroplanes					Rotorcraft		Balloons and Airships	Cliders and Motor Cliders	Gyrocopters	UAS	Total Aircraft
	Annex II (including Ultralights)	$450 \mathrm{~kg}-5,700 \mathrm{~kg}$		Above 5,700 kg								
		Single-Engine	Multi-Engine	Turboprops	Business Jets	Sin	Muk-Engine					
2017	9	7	2	2	1	3	9	6	0	0	0	39

Source: Georgia Civil Aviation Agency (http://www.gcaa.ge) and GAMA analysis

3.13 Germany—Number of Aircraft by Type (2010-2017)

Year	Fixed-wing Aeroplanes							Rotorcraft	Motor Cliders	Airships	Balloons	Gliders	Total Aircraft
	Single-Engine		Multi-Engine										
	$\begin{gathered} \text { 2,000 kg } \\ \text { and Below } \end{gathered}$	$\begin{gathered} 2,000 \mathrm{~kg}- \\ 5,700 \mathrm{~kg} \end{gathered}$	$\begin{aligned} & \text { 2,000 kg } \\ & \text { and Below } \end{aligned}$	$\begin{gathered} 2,000 \mathrm{~kg}- \\ 5,700 \mathrm{~kg} \end{gathered}$	$14,000 \mathrm{~kg}$	$20,000 \mathrm{~kg}$	$20,000 \mathrm{~kg}$						
2010	6,801	153	242	444	228	40	772	811	3,081	4	1,260	7,867	21,703
2011	6,744	155	243	428	236	38	770	773	3,122	3	1,257	7,834	21,603
2012	6,757	150	239	414	217	30	767	774	3,185	5	1,215	7,793	21,546
2013	6,733	155	240	403	199	34	758	769	3,263	3	1,201	7,704	21,462
2014	6,689	149	228	393	207	33	751	745	3,357	3	1,183	7,657	21,395
2015	6,596	147	229	371	191	34	751	757	3,403	3	1,164	7,567	21,213
2016	6,553	160	221	381	211	35	777	733	3,456	3	1,124	7,450	21,104
2017	6,527	174	219	291	219	37	753	729	3,528	3	1,102	7,383	20,965

The data, especially Fixed-wing Aeroplanes above $20,000 \mathrm{~kg}$, includes commercial airliners.

3.14 Guernsey—Number of General Aviation Aircraft by Type (2013-2017)

Year	Fixed-wing Aeroplanes					Rotorcraft		Balloons and Airships	Cliders and Motor Cliders	Gyrocopters	UAS	Total Aircraft
	Annex II (including Ultralights)	$450 \mathrm{~kg}-5,700 \mathrm{~kg}$		Above 5,700 kg		Single-Engine	Multi-Engine					
		Single-Engine	Multi-Engine	Turboprops	Business Jets							
2013	0	4	0	0	0	0	0	0	0	0	0	4
2014	0	17	1	0	6	0	1	0	0	0	0	25
2015	0	23	4	0	18	1	3	0	0	0	0	49
2016	0	25	16	3	39	1	4	0	0	0	0	88
2017	0	30	23	14	47	7	8	0	0	0	0	129

The turboprop and business jet data include aircraft not operated by an AOC holder, including lessor-owned aircraft in between leases.

3.15 Iceland—Number of General Aviation Aircraft by Type (2015-2017)

3.16 Ireland—Number of General Aviation Aircraft by Type (2011-2017)

Year	Fixed-wing Aeroplanes							Rotorcraft		Balloons and Airships	Gliders and Motor Cliders	Gyrocopters	UAS	Total Aircraft
	Microlights, Amateur-Built, and Amphibian	Below $2,000 \mathrm{~kg}$		2,000 kg-5,700 kg		$\begin{aligned} & 5,701 \mathrm{~kg}- \\ & 15,000 \mathrm{~kg} \end{aligned}$	$\begin{gathered} \text { Above } \\ 15,000 \mathrm{~kg} \end{gathered}$	Single- Engine	MultiEngine					
		Single- Engine	MultiEngine	Single- Engine	MultiEngine									
2011	187	228	11	2	12	7	14	45	20	12	22	18	n/a	578
2012	168	181	7	5	6	5	14	31	16	10	n/a	11	n/a	454
2013	179	180	8	5	6	3	17	30	19	10	25	13	n/a	495
2014	189	179	6	3	8	1	8	25	14	10	25	14	n/a	482
2015	201	178	6	3	8	1	6	21	13	10	24	13	n/a	484
2016	207	180	5	2	9	1	8	22	15	10	23	15	n/a	497
	Annex II (including Ultralights)	$450 \mathrm{~kg}-5,700 \mathrm{~kg}$				Above 5,700 kg								
		Single-Engine		Multi-Engine		Turboprops Business Jets								
2017	224	178		15		0	10	21	17	10	23	15	n/a	513

3.17 Isle of Man—Number of Aircraft by Type (2014-2017)

Year	Fixed-wing Aeroplanes			Rotorcraft		Total Aircraft
	5,700 kg and Below	5,700 kg-15,000 kg	Above 15,000 kg	Single-Engine	Multi-Engine	
2014	76	65	230	2	28	401
2015	71	68	244	2	26	411
2016	67	61	280	0	43	451
2017	67	51	263	2	48	431

Source: Isle of Man Aircraft Registery, www.gov.im

3.18 Italy—Number of General Aviation Aircraft by Type (2017)

Year	Fixed-wing Aeroplanes					Rotorcraft		Balloons and Airships	Cliders and Motor Cliders	Gyrocopters	UAS	Total Aircraft
	Annex II (including Ultralights)	$450 \mathrm{~kg}-5,700 \mathrm{~kg}$		Above 5,700 kg		Single-Engine	Multi-Engine					
		Single-Engine	Multi-Engine	Turboprops	Business Jets							
2017	13,181	668	99	21	56	335	168	76	157	0	6,334	21,095

3.19 Latvia—Number of General Aviation Aircraft by Type (2014-2017)

Year	Fixed-wing Aeroplanes								Rotorcraft			Motor Gliders	Gliders	$\begin{aligned} & \text { Gyrocop- } \\ & \text { ters } \end{aligned}$	Total Aircraft
	5,700 kg and Below						Above 5,700 kg		Piston Engine	Turbine					
	Piston Engine		Turboprops		Business Jets										
	Single- Engine	MultiEngine	SingleEngine	MultiEngine	Single- Engine	MultiEngine	props	Turbojets		Engine	Engine				
2014	122	6	2	2	8	2	1	3	10	5	12	25	21	2	221
2015	130	6	10	1	2	2	0	1	9	4	12	10	21	2	210
2016	126	6	7	1	2	3	1	3	6	5	10	10	22	2	204
2017	111	4	2	3	7	1	0	3	8	6	8	11	23	3	190

Source: Latvian CAA (Civilās Aviācijas Aǵentūra), www.caa.lv

3.20 Lithuania—Number of General Aviation Aircraft by Type (2014-2017)

Source: Lithuanian CAA (Civilines Aviacijos Administracija), www.caa.lt

3.21 Luxembourg—Number of General Aviation Aircraft by Type (2014-2017)

Year	Fixed-wing Aeroplanes							Rotorcraft			Balloons and Airships	Cliders and Motor Cliders	Gyrocopters	UAS	Total Aircraft
	Annex II (including Ultralights)	$450 \mathrm{~kg}-5,700 \mathrm{~kg}$			Above 5,700 kg			Single-Engine		Multi-Engine					
		Single-Engine	Multi-	Engine	Turbop		Business Jets								
2014	33	183						11			54	11	0	0	292
2015	26	191						54			12	10	0	0	293
2016	24	89			96				2	10	56	7	0	0	284
2017	32	69		3	11		91		2	11	47	7	0	0	273

3.22 Macedonia—Number of General Aviation Aircraft by Type (2017)

Year	Fixed-wing Aeroplanes					Rotorcraft		Balloons and Airships	Cliders and Motor Cliders	Gyrocopters	UAS	Total Aircraft
	Annex II (including Ultralights)	$450 \mathrm{~kg}-5,700 \mathrm{~kg}$		Above 5,700 kg								
		Single-Engine	Multi-Engine	Turboprops	Business Jets	Single Engine	M					
2017	23	1	3	1	0	0	1	14	0	0	0	43

3.23 Malta—Number of General Aviation Aircraft by Type (2011-2017)

Year	Fixed-wing Aeroplanes					Rotorcraft		Balloons and Airships	Cliders and Motor Cliders	Gyrocopters	UAS	Total Aircraft
	Annex II (including Ultralights)	$450 \mathrm{~kg}-5,700 \mathrm{~kg}$		Above 5,700 kg		Single-Engine	Multi-Engine					
		Single-Engine	Multi-Engine	Turboprops	Business Jets							
2011	30	17	9	10	34	2	0	0	0	0	0	102
2012	33	23	15	8	44	4	0	0	0	0	0	127
2013	33	24	18	9	66	4	0	0	0	0	0	154
2014	32	18	14	9	96	4	0	0	0	0	0	173
2015	32	18	11	8	139	4	0	0	0	0	0	212
2016	32	17	11	6	173	4	0	0	0	0	0	243
2017	32	17	13	6	194	3	0	0	0	0	0	265

Source: Transport Malta, www.transport.gov.mt \& GAMA analysis

3.24 Montenegro—Number of General Aviation Aircraft by Type (2014-2017)

Year	Fixed-wing Aeroplanes					Rotorcraft		Balloons and Airships	Cliders and Motor Cliders	Gyrocopters	UAS	Total Aircraft
	Annex II (including Ultralights)	$450 \mathrm{~kg}-5,700 \mathrm{~kg}$		Above 5,700 kg								
		Single-Engine	Multi-Engine	Turboprops	Business Jets							
2014	n/a		9		2	7		1	2	n/a	n/a	31
2015	n/a		9		4	4		0	1	n/a	n/a	18
2016	n/a		0		5	5		1	2	n/a	n/a	23
2017	n/a	16	0	0	2	3	3	2	2	n/a	n/a	28

Source: Civil Aviation Agency of Montenegro (Agencija za civilno vazduhoplovstvo) Data, www.caa.me and GAMA analysis
3.25 Netherlands—Number of Aircraft by Type (2017)

Year	Fixed-wing Aeroplanes					Rotorcraft		Balloons and Airships	Gliders and Motor Cliders	Gyrocopters	UAS	Total Aircraft
	Annex II (including Ultralights)	$450 \mathrm{~kg}-5,700 \mathrm{~kg}$		Above 5,700 kg		SingleEngine	MultiEngine					
		Single-Engine	Multi-Engine	Turboprops	Turbofan							
2017	202	661	49	15	249	41	36	415	628	10	1,205	3,511

Turbofan data includes both business jets and aeroplanes used in airline operations. Source: Dutch Environment and Transport Inspectorate (Inspectie Leefomgeving en Transport), www.lent.nl

3.26 Norway—Number of Aircraft by Type (2015-2016)

Year	Fixed-wing Aeroplanes			Rotorcraft		Cliders and Motor Gliders	Balloons and Airships	Total Aircraft
	5,700 kg and Below	Above 5,700 kg	Above $60,000 \mathrm{~kg}$	5,700 kg and Below	Above 5,700 kg			
2015	799			266		149	20	1,234
2016	454	208	131	192	75	151	20	1,231

3.27 Poland—Number of General Aviation Aircraft by Type (2014-2017)

Year	Fixed-wing Aeroplanes					Rotorcraft		Balloons and Airships	Cliders and Motor Gliders	Gyrocopters	UAS	Total Aircraft
	Annex II (including Ultralights)	$450 \mathrm{~kg}-5,700 \mathrm{~kg}$		Above 5,700 kg								
		Single-Engine	Multi-Engine	Turboprops	Business Jets							
2014	469	753	84	9	12	97	83	178	837	21	0	2,543
2015	501	759	79	15	13	104	90	196	885	26	0	2,668
2016	502	778	82	13	15	103	99	203	907	32	32	2,766
2017	532	785	75	10	19	125	86	212	948	38	32	2,862

Annex Il aircraft are also included in the total count of single-engine aeroplanes below $5,700 \mathrm{~kg}$.
Source: Polish Civil Aviation Authority (Urzad Lotnictwa Cywilnego), www.ulc.gov.pl

3.28 Portugal—Number of General Aviation Aircraft by Type (2017)

Year	Fixed-wing Aeroplanes					Rotorcraft		Balloons and Airships	Cliders and Motor Cliders	Gyrocopters	UAS	Total Aircraft
	Annex II (including Ultralights)	$450 \mathrm{~kg}-5,700 \mathrm{~kg}$		Above 5,700 kg								
		Single-Engine	Multi-Engine	Turboprops	Business Jets							
2017	309	420	47	7	133	22	61	50	20	1	0	1,227

Source: Portuguese Civil Aviation Authority (Instituto Nacional de Aviação Civil), www.inac.pt and GAMA analysis

3.29 Romania—Number of Aircraft by Type (2015)

Year	Fixed-wing Aeroplanes		Rotorcraft		Total Aircraft
	5,700 kg and Below	Above 5,700 kg	Single-Engine	Multi-Engine	
2015	97	5	17	25	144

3.30 Serbia—Number of General Aviation Aircraft by Type (2014-2017)

Source: Civil Aviation Directorate of the Republic of Serbia (дирелторат цибилног ваздухоплоөстаа Републине Србйе), www.cad.gov.rs
3.31 Slovakia—Number of General Aviation Aircraft by Type (2014-2017)

Year	Fixed-wing Aeroplanes					Rotorcraft		Balloons and Airships	Cliders and Motor Cliders	Gyrocopters	UAS	Total Aircraft
	Annex II (including Ultralights)	$450 \mathrm{~kg}-5,700 \mathrm{~kg}$		Above 5,700 kg								
		Single-Engine	Multi-Engine	Turboprops	Business Jets							
2014	9			31		55		42	252	0	0	173
2015	69			72		68		41	269	0	0	212
2016	n/a											
2017	50	258	27	5	5	28	27	42	266	0	0	265

Source: Transport Authority Slovakia (Dopravný úrad), www.nsat.sk and GAMA analysis

3.32 Slovenia—Number of Aircraft by Type (2014-2017)

Year	Ultralights	Fixed-wing Aeroplanes				Rotorcraft		Balloons	Cliders and Motor Cliders	Gyrocopters	UAS	Total Aircraft
2014	112	221				22		61	244	3	n/a	663
2015	113	202				21		58	241	3	n/a	638
2016	108	$450 \mathrm{~kg}-5,700 \mathrm{~kg}$						58	236	3	n/a	619
	Annex II (including Ultralights)			Above 5,700 kg		SingleEngine	Multi- Engine					
		Single-Engine	Multi-Engine	Turboprops	Business Jets							
2017	145	271	8	1	10	17	5	31	146	1	n/a	635

3.33 Spain—Number of Aircraft by Type (2014-2015)

Year	Fixed-wing Aeroplanes					Rotorcraft		Balloons and Airships	Gliders and Motor Gliders	Gyrocopters	UAS	Total Aircraft
	Annex II (including Ultralights)	$450 \mathrm{~kg}-5,700 \mathrm{~kg}$		Above 5,700 kg								
		Single-Engine	Multi-Engine	Turboprops	Business Jets							
2014	3,122	1,581	356	63	187	313	238	561	252	n/a	n/a	6,673
2015	3,168	1,557	350	66	172	306	257	572	290	n/a	n/a	6,738

Source: Spanish State Aviation Safety Agency (Agencia Estatal de Seguridad Aérea), www.seguridadaerea.gob.es

3.34 Sweden—Number of Aircraft by Weight and Type (2008-2015)

Year	Motorpowered Aircraft							Gliders, Motor Gliders, and Balloons	Total Aircraft
	$\begin{aligned} & 2,000 \mathrm{~kg} \\ & \text { and Below } \end{aligned}$	$\begin{gathered} 2,001 \mathrm{~kg}- \\ 5,700 \mathrm{~kg} \end{gathered}$	$\begin{aligned} & 5,701 \mathrm{~kg}- \\ & 10,000 \mathrm{~kg} \end{aligned}$	$\begin{aligned} & 10,001 \mathrm{~kg}- \\ & 15,000 \mathrm{~kg} \end{aligned}$	$\begin{aligned} & 15,001 \mathrm{~kg}- \\ & 25,000 \mathrm{~kg} \end{aligned}$	$\begin{aligned} & 25,001 \mathrm{~kg}- \\ & 100,000 \mathrm{~kg} \end{aligned}$	Above $100,000 \mathrm{~kg}$		
2008	2,096	187	46	30	64	54	5	436	2,918
2009	2,115	191	44	27	67	59	5	420	2,928
2010	2,251	189	40	27	72	47	5	274	2,905
2011	2,092	198	37	21	75	45	5	255	2,728
2012	2,093	191	34	22	72	44	3	263	2,722
2013	2,094	186	37	23	84	44	2	321	2,791
2014	2,090	186	31	24	82	45	2	340	2,800
	Aeroplanes	Rotorcraft	Gliders	Motor Gliders	Balloons	Ultralights	Gyrocopters		
2015	1,650	261	330	155	107	475	68	n/a	3,046

The number of gliders, powered gliders, and balloons is based on the number of valid airworthiness certificates on December 31 of the year.
Source: Swedish Transport Ministry (Transportstyrelsen), www.transportstyrelsen.se
Sweden changed how aircraft registry data is published in 2015.

3.35 Switzerland—Number of General Aviation Aircraft by Type (2015-2017)

Year	Fixed-wing Aeroplanes					Rotorcraft		Balloons and Airships	Cliders and Motor Gliders	Gyrocopters	UAS	Total Aircraft
	Annex II (including Ultralights)	$450 \mathrm{~kg}-5,700 \mathrm{~kg}$		Above 5,700 kg								
		Single-Engine	Multi-Engine	Turboprops	Business Jets							
2015	526	772	109	11	46	204	53	306	847	2	n/a	2,876
2016	540	797	112	11	58	227	59	318	849	3	n/a	2,974
2017	542	824	109	11	65	247	62	336	862	8	n/a	3,066

Souce: Swiss Federal Office of Civil Aviation (Bundesamt für Zivillufffahrt), www.bazl.admin.ch

3.36 Ukraine—Number of Aircraft by Type (2015)

Year	Fixed-wing Aeroplanes	Rotorcraft	Ultralights	Balloons	Gliders	Gyrocopters	Total Aircraft
2015	462	193	55	19	52	7	788

3.37 United Kingdom—Number of Aircraft by Type (2010-2017)

Year	Fixed-wing Aeroplanes								Microlights	Rotor: craft	Cliders	Hang Gliders	$\begin{aligned} & \text { Balloons } \\ & \text { and } \\ & \text { Min. Lift } \end{aligned}$	Airships	Gyrocopters	Total Aircraft
	Amphibian	750 kg and Below	751 kg- 5,700 kg	$\begin{aligned} & 5,701 \mathrm{~kg}- \\ & 15,000 \mathrm{~kg} \end{aligned}$	$\begin{aligned} & 15,001 \mathrm{~kg}- \\ & 50,000 \mathrm{~kg} \end{aligned}$	$\begin{gathered} \text { Above } \\ 50,000 \mathrm{~kg} \end{gathered}$	SLMG	Seaplanes								
2010	20	3,217	5,764	253	306	742	287	2	4,071	1,364	2,295	8	1,720	18	312	20,379
2011	20	3,199	5,663	228	297	742	285	2	4,043	1,299	2,256	8	1,655	19	324	20,040
2012	21	3,245	5,564	219	293	755	296	2	4,045	1,260	2,248	9	1,639	21	322	19,939
2013	21	3,269	5,505	212	289	761	302	2	4,029	1,232	2,247	9	1,625	20	327	19,850
2014	20	3,300	5,484	200	272	791	314	3	3,998	1,231	2,267	9	1,607	21	329	19,846
2015	21	3,325	5,493	190	260	806	321	3	4,015	1,258	2,260	9	1,598	23	342	19,924
2016	22	3,346	5,503	179	274	833	328	3	4,028	1,290	2,265	9	1,591	20	336	20,027
2017	21	3,395	5,497	174	261	844	322	3	3,993	1,283	2,257	9	1,608	20	341	20,028

[^3]The registration data shows total by type and has not been adjusted for invalid registrations.
The United Kingdom identifies the following number of invalid registrations:

- 2014: There were 6,265 invalid registrations and 13,581 valid registrations out of a total of 19,846 . - 2015: There were 6,415 invalid registrations and 13,509 valid registrations out of a total of 19,924 . - 2016: There were 6,649 invalid registrations and 13,378 valid registrations out of a total of 20,027 . - 2017: There were 6,759 invalid registrations and 13,269 valid registrations out of a total of 20,028 .

Asia-Pacific Fleet Data

4.1 Australia-Number of General Aviation and Regional Aircraft by Category (1995-2017)

Year	Amateur-Built	Fixed-wing Aeroplanes				Rotorcraft	Balloons \& Airships	Remote Piloted Aircraft	Total Aircraft
		Gliders	Motor Gliders	Single-Engine	Multi-Engine				
1995	-	-	-	6,787	1,779	739	243	-	9,548
1996	-	-	-	6,861	1,799	739	266	-	9,665
1997	-	-	-	6,994	1,803	768	284	-	9,849
1998	-	-	-	7,137	1,783	791	295	-	10,006
1999	-	-	-	7,247	1,743	868	310	-	10,168
2000	-	-	-	7,302	1,755	743	325	-	10,125
2001	673	-	-	6,680	1,736	979	334	-	10,402
2002	707	-	-	6,668	1,706	1,038	336	-	10,455
2003	789	-	-	6,727	1,696	1,121	338	-	10,671
2004	848	-	-	6,794	1,718	1,194	350	-	10,904
2005	896	-	-	6,908	1,733	1,292	351	-	11,180
2006	910	-	-	6,838	1,730	1,320	319	-	11,117
2007	968	-	-	6,955	1,804	1,481	333	-	11,541
2008	1,037	-	-	7,180	1,871	1,619	338	-	12,045
2009	1,071	-	-	7,230	1,885	1,703	340	-	12,229
2010	1,111	-	-	7,375	1,932	1,800	346	-	12,564
2011	1,176	-	-	7,410	1,930	1,855	354	-	12,725
2012	1,187	-	-	7,256	1,815	1,817	355	-	12,430
2013	1,278	-	-	7,798	2,053	2,077	379	-	13,585
2014	1,487	950	246	7,818	2,364	2,038	383	-	15,286
2015	1,516	953	250	7,789	2,361	2,038	382	-	15,289
2016	1,547	949	271	7,802	2,335	2,072	382	-	15,358
2017	1,570	944	280	7,805	2,320	2,107	397	1	15,424

Source: Dept. of Transportation and Regional Services, Bureau of Transport and Regional Economics, www.bitre.gov.au and Civil Aviation Safety Authority, www.casa.gov.au

4.2 China—Number of Aircraft by Type (2012-2013)

4.3 Japan—Number of Aircraft by Type (2000-2016)

Year	Airplanes					Rotorcraft		Cliders	Airships	Total Aircraft
	Piston		Turboprop		Turbojet or Turbofan					
	Single-Engine	Multi-Engine	Single-Engine	Multi-Engine		Piston-Engine	Turbine-Engine			
2000	584	63	13	110	450	193	764	624	1	2,802
2001	577	62	16	113	455	183	747	644	1	2,798
2002	575	59	17	112	464	166	703	648	1	2,745
2003	570	53	18	112	474	160	661	649	1	2,698
2004	558	52	18	112	474	154	647	658	2	2,675
2005	543	51	18	110	485	160	630	659	2	2,658
2006	540	46	21	112	500	160	618	665	3	2,665
2007	542	45	23	111	509	169	604	666	3	2,672
2008	539	43	23	111	512	171	597	665	3	2,664
2009	545	46	23	109	523	177	600	670	2	2,695
2010	546	54	24	112	511	181	600	667	1	2,696
2011	511	54	23	101	498	184	593	668	1	2,633
2012	505	52	26	95	529	185	606	667	1	2,666
2013	504	53	28	100	563	180	623	663	1	2,715
2014	490	51	28	101	582	178	631	661	1	2,723
2015	489	55	30	102	602	173	628	654	1	2,734
2016	483	57	39	97	629	171	640	650	1	2,767
								urce: Civil A	ureau (航	www.mlit.go

4.4 New Zealand—Number of Aircraft by Type (2006-2017)

Year	Airplanes by Mass				Sport	Rotorcraft	Total Aircraft
	Agricultural	Small	Medium	Large			
2006	127	1,420	78	117	1,638	653	4,033
2007	124	1,449	82	116	1,723	698	4,192
2008	120	1,492	81	121	1,793	747	4,354
2009	110	1,510	84	118	1,833	760	4,415
2010	110	1,515	84	119	1,853	761	4,442
	Aeroplanes	Microlight ${ }^{1 \& 2}$	Amateur-Built ${ }^{1}$	Gliders ${ }^{2}$	Other ${ }^{3}$	Rotorcraft	
2012	1,985	1,029	316	417	311	793	4,851
2013	1,976	1,026	291	443	307	831	4,874
2014	1,964	1,058	289	426	329	862	4,928
2015	1,970	1,082	292	430	335	869	4,978
2016	1,981	1,091	300	469	402	874	5,117
2017	2,001	1,105	323	453	470	869	5,221

The data does not differentiate if airplane is used for GA or commercial operations.
In 2006, the CAA stopped publishing the number of registered aircraft by weight in favor of classes. In 2012, the CAA began publishing aircraft registry statistics by aircraft class.

1. Amateur-built aircraft includes airplanes, gliders, and helicopters.
2. Gliders includes gliders, paragliders, power gliders, amateur-built gliders, and hang gliders.
3. Other includes parachutes, gyroplanes, balloons, and jetpack.
4.5 Singapore-Number of Aircraft by Type (2012-2017)

Year	General Aviation Airplanes		Rotorcraft	Airline	Total Aircraft
	Piston	Turbine			
2012	23	0	2	178	203
2013	22	0	1	191	214
2014	20	0	4	200	224
2015	22	0	2	203	227
2016	15	0	1	203	219
2017	15	0	1	212	228

Select Other GA Aircraft Registry Data for Large Fleets

5.1 Brazil—Number of Aircraft Registrations by Type (2000-2017)

Year	Airplanes				Other Aircraft					Total Aircraft
	Piston-Engine	Agricultural	Turboprop	Jet Turbine	Rotorcraft	Sailplanes	Balloons	Dirigibles	Experimental	
2000	8,333	724	1,218	500	841	308	4	1	3,348	14,553
2001	8,412	767	1,260	542	897	309	3	1	3,513	14,937
2002	8,445	810	1,303	579	940	310	3	1	3,684	15,265
2003	8,496	862	1,323	560	955	316	3	1	3,882	15,536
2004	8,604	900	1,348	559	981	316	3	1	4,069	15,881
2005	8,718	955	1,361	596	989	316	3	1	4,286	16,270
2006	8,798	978	1,399	603	1,011	309	3	1	3,001	15,125
2007	8,909	1,005	1,488	647	1,097	303	3	1	3,225	15,673
2008	9,164	1,049	1,617	773	1,194	299	3	1	3,525	16,576
2009	9,354	1,044	1,700	820	1,325	300	3	1	3,764	19,765
2010	n/a	1,581	n/a	n/a	1,524	n/a	n/a	n/a	4,051	17,335
2011	n/a	1,695	n/a	n/a	1,717	n/a	n/a	n/a	4,474	18,710
2012	n/a	1,800	n/a	n/a	1,909	n/a	n/a	n/a	4,750	19,769
2013	n/a	1,870	n/a	n/a	2,038	n/a	n/a	n/a	4,906	20,429
2014	n/a									
2015	n/a									
2016	16,503	n/a	1,798	2,445	2,579	592	n/a	n/a	n/a	23,984
2017	16,446	n/a	1,858	2,507	2,590	609	n/a	n/a	n/a	24,256

The experimental category includes ultralights, balloons, gyrocopters, sailplanes, motorpowered sailplanes, dirigibles, and experimental airplanes starting in 2010.

Aircraft registration data for 2014 and 2015 was not available at time of publication.

ANAC began identification of agricultural aircraft in 2012. The data set for The data for 2016-2017 does not include air-
agricultural aircraft captures aircraft also identified in other columns. craft that have not been classified by ANAC.

Source: Agência Nacional de Aviação Civil (ANAC)
Registro Aeronáutico Brasileiro (RAB), Brazil, www.anac.gov.br

5.2 South Africa—Number of General Aviation Aircraft by Type (1999-2014)

Year	Aeroplanes											Rotorcraft		Sport, Rec., Gliders, \& Other	Total Aircraft
	Piston-Engine Powered				Turboprop				Turbojet						
	One- Engine	Two- Engine	Other	Agricultural	One- Engine	TwoEngine	Other	Agricultural	TwoEngine	ThreeEngine	Other	Piston	Turbine		
1999	2,282	695	4	144	66	201	10	43	157	17	21	228	251	3,103	7,222
2000	2,285	706	6	143	68	215	10	45	160	20	21	248	263	3,294	7,484
2001	2,280	701	6	144	79	237	10	48	164	27	22	258	271	3,470	7,717
2002	2,299	698	10	144	83	249	8	46	176	29	27	263	279	3,616	7,927
2003	2,338	716	12	148	91	271	8	52	197	31	34	308	290	3,907	8,403
2004	2,422	724	11	151	88	306	9	54	189	34	41	348	318	4,127	8,822
2005	2,459	731	10	150	93	310	8	56	206	21	44	385	337	4,253	9,063
2006	2,608	738	8	159	110	331	6	53	261	18	58	514	384	4,941	10,189
2007	-	-	-	-	-	-	-	-	-	-	-	-	-	-	.
2008	2,666	755	7	153	108	324	10	55	299	18	74	575	434	5,215	10,693
2009	2,712	751	7	154	105	329	9	54	315	15	82	604	461	5,352	10,950
2010	2,745	713	8	154	111	353	9	55	339	15	92	635	474	5,500	11,203
2011	2,808	710	9	152	112	353	9	54	365	16	93	669	459	5,674	11,483
2012	2,851	707	10	153	113	349	8	54	377	18	87	671	502	5,846	11,746
2013	2,898	711	12	154	115	341	7	55	381	18	88	680	522	5,964	11,946
2014	2,893	716	28	157	120	347	8	60	395	18	87	687	540	6,072	12,128

2007 data is not available from the South African Aircraft Registry.
Source: South African Civil Aviation Authority, www.caa.co.za, and Aircraft Registry, www.avdex.co.za
 and Airmen Certificate Statistics
6.1 Active FAA Certificated Pilots (1982-2017)

Year	Pilots		Students ${ }^{7}$	Rec. ${ }^{5}$	Sport ${ }^{6}$	Airplane ${ }^{1}$			Rotorcraft (Only)	$\begin{aligned} & \text { Clider } \\ & \text { (Only) }{ }^{2} \end{aligned}$	Lighter- Than-Air	Remote Pilot ${ }^{9}$	Flight Instructor ${ }^{3}$	Instrument Ratings ${ }^{3,4}$	
	Total	\% Women				Private	Commercial	ATP						Total	\% of Total
1982	733,255	6.18\%	156,361	-	-	322,094	165,093	73,471	7,034	7,842	1,360	-	62,492	255,073	44.2\%
1983	718,004	6.08\%	147,197	-	-	318,643	159,495	75,938	7,237	8,157	1,337	-	62,201	254,271	44.5\%
1984	722,376	6.14\%	150,081	-	-	320,086	155,929	79,192	7,532	8,390	1,166	-	61,173	256,584	44.8\%
1985	709,540	6.13\%	146,652	-	-	311,086	151,632	82,740	8,123	8,168	1,139	-	58,940	258,559	45.9\%
1986	709,118	6.08\%	150,273	-	-	305,736	147,798	87,186	8,122	8,411	1,133	-	57,355	262,388	47.0\%
1987	699,653	6.09\%	146,016	-	-	300,949	143,645	91,287	8,702	7,901	1,153	-	60,316	266,122	48.1\%
1988	694,016	6.09\%	136,913	-	-	299,786	143,030	96,968	8,608	7,600	1,111	-	61,798	273,804	49.1\%
1989	700,010	6.05\%	142,544	-	-	293,179	144,540	102,087	8,863	7,708	1,089	-	61,472	282,804	50.7\%
1990	702,659	5.77\%	128,663	87	-	299,111	149,666	107,732	9,567	7,833	n/a	-	63,775	297,073	51.8\%
1991	692,095	5.91\%	120,203	161	-	293,306	148,385	112,167	9,860	8,033	n/a	-	69,209	303,193	53.0\%
1992	682,959	5.95\%	114,597	187	-	288,078	146,385	115,855	9,652	8,205	n/a	-	72,148	306,169	53.9\%
1993	665,069	5.93\%	103,583	206	-	283,700	143,014	117,070	9,168	8,328	n/a	-	75,021	305,517	54.4\%
1994	654,088	5.99\%	96,254	241	-	284,236	138,728	117,434	8,719	8,476	n/a	-	76,171	302,300	54.2\%
1995	639,184	5.67\%	101,279	232	-	261,399	133,980	123,877	7,183	11,234	n/a	-	77,613	298,798	55.6\%
1996	622,261	5.57\%	94,947	265	-	254,002	129,187	127,486	6,961	9,413	n/a	-	78,551	297,895	56.5\%
1997	616,342	5.59\%	96,101	284	-	247,604	125,300	130,858	6,801	9,394	n/a	-	78,102	297,409	57.2\%
1998	618,298	5.72\%	97,736	305	-	247,226	122,053	134,612	6,964	9,402	n/a	-	79,171	300,183	57.7\%
1999	635,472	5.81\%	97,359	343	-	258,749	124,261	137,642	7,728	9,390	n/a	-	79,694	308,951	57.5\%
2000	625,581	6.11\%	93,064	340	-	251,561	121,858	141,596	7,775	9,387	n/a	-	80,931	311,944	58.6\%
2001	612,274	5.82\%	86,731	316	-	243,823	120,502	144,702	7,727	8,473	n/a	-	82,875	315,276	60.0\%
2002	631,762	5.49\%	85,991	317	-	245,230	125,920	144,708	7,770	21,826	n/a	-	86,089	317,389	58.2\%
2003	625,011	6.12\%	87,296	310	-	241,045	123,990	143,504	7,916	20,950	n/a	-	87,816	315,413	58.7\%
2004	618,633	6.09\%	87,910	291	-	235,994	122,592	142,160	8,586	21,100	n/a	-	89,596	313,545	59.1\%
2005	609,737	6.11\%	87,213	276	134	228,619	120,614	141,992	9,518	21,369	n/a	-	90,555	311,828	59.7\%
2006	597,109	6.13\%	84,866	239	939	219,233	117,610	141,935	10,690	21,597	n/a	-	91,343	309,333	60.5\%
2007	590,349	6.12\%	84,339	239	2,031	211,096	115,127	143,953	12,290	21,274	n/a	-	92,175	309,865	61.5\%
2008	613,746	5.83\%	80,989	252	2,623	222,596	124,746	146,838	14,647	21,055	n/a	-	93,202	325,247	61.4\%
2009	594,285	6.39\%	72,280	234	3,248	211,619	125,738	144,600	15,298	21,268	n/a	-	94,863	323,495	62.4\%
2010	627,588	5.86\%	119,119	212	3,682	202,020	123,705	142,198	15,377	21,275	n/a	-	96,473	318,001	63.0\%
2011	617,128	6.39\%	118,657	227	4,066	194,441	120,865	142,511	15,220	21,141	n/a	-	97,409	314,122	63.6\%
2012	610,576	6.77\%	119,946	218	4,493	188,001	116,400	145,590	15,126	20,802	n/a	-	98,328	311,952	64.2\%
2013	599,086	6.78\%	120,285	238	4,824	180,214	108,206	149,824	15,114	20,381	n/a	-	98,842	307,120	64.8\%
2014	593,499	6.63\%	120,546	220	5,157	174,883	104,322	152,933	15,511	19,927	n/a	-	100,993	306,066	65.5\%
2015	590,038	6.66\%	122,729	190	5,482	170,718	101,164	154,730	15,566	19,460	n/a	-	102,628	304,329	71.3\%
2016	584,362	6.71\%	128,501	175	5,889	162,313	96,081	157,894	15,518	17,991	n/a	20,362	104,224	302,241	72.6\%
2017	609,306	7.01\%	149,121	153	6,097	162,455	98,161	159,825	15,355	18,139	n/a	69,166	106,692	306,652	72.9\%

1. Includes pilots with an airplane-only certificate. Also includes those with an airplane and a helicopter and/or glider certificate. Prior to 1995, these pilots were categorized as private, commercial, or airline transport, based on their airplane certificate. Beginning in 1995, they are categorized based on their highest certificate. For example, if a pilot holds a private airplane certificate and a commercial helicopter certificate, prior to 1995, the pilot would be categorized as private; 1995 and after, as commercial.
2. Glider pilots are not required to have a medical examination; however, the totals represent pilots who received a medical examination within the last 25 months.
3. Not included in total.
4. The instrument rating is as shown on pilot certificates but does not indicate an additional certificate. The percent of total does not include student, sport, and recreational pilots.
5. Recreational certificate was first issued in 1990.

Source: FAA 6. Sport pilot certificate was first issued in 2005.
7. The Federal Aviation Administration (FAA) changed the validity of student pilot certificates in 2010 through an amendment to 14 CFR $61.19(\mathrm{~b})(1)$, resulting in the duration of validity for student pilot certificates for pilots under 40 years of age, increasing from 36 to 60 months. This created an increase in the active student pilot population to 119,119 active airmen at the end of 2010 compared to 72,280 the prior year.
8. 1994 counts based on medical certificates issued 27 or fewer months ago. All other years based on medical certificates issued 25 or fewer months ago.
9. The FAA created the Remote Pilot operator certificate in 2016. The Remote Pilot operator data is not part of the total number of pilots.

6.2 Active FAA Certificated Pilots and Flight Instructors by State and Region (as of December 31, 2017)

FAA Region and State	Total Pilots	Students	Recreational	Sport	Airplane			Rotor, Clider, \& Balloon	Remote Pilot	Flight Instructor ${ }^{1}$
					Private	Commercial	Airline Transport			
Total ${ }^{2}$	609,305	149,121	157	6,097	174,516	114,186	165,228	81,063	69,166	106,692
United States - Total ${ }^{3}$	566,888	138,156	157	6,073	166,681	98,507	157,314	76,589	68,586	103,805
Non-U.S. Total ${ }^{5}$	42,417	10,965	0	24	7,835	15,679	7,914	4,474	580	2,887
Alabama	7,430	1,787	4	77	2,082	1,970	1,510	1,850	1,025	1,642
Alaska	7,998	1,546	1	58	2,588	1,563	2,242	993	540	1,418
American Samoa	3	0	0	0	0	0	3	0	0	0
Arizona	19,543	4,602	0	169	4,982	4,037	5,753	3,377	1,713	4,103
Arkansas	5,228	1,401	1	85	1,691	1,084	966	458	534	789
California	59,929	15,528	8	505	20,517	10,720	12,651	8,953	7,434	9,750
Colorado	18,097	3,858	4	140	4,656	2,971	6,468	2,758	2,346	3,854
Connecticut	4,810	1,008	0	29	1,610	765	1,398	690	673	886
Delaware	1,345	320	0	12	368	216	429	187	247	268
District of Columbia	602	195	0	4	193	92	118	77	98	113
Federated States of Micronesia	3	0	0	0	0	2	1	1	0	1
Florida	59,568	16,184	3	567	13,445	10,507	18,862	7,260	5,667	10,556
Georgia	18,510	3,848	5	153	4,544	2,495	7,465	2,172	2,127	3,493
Guam	184	30	0	0	18	20	116	28	17	46
Hawaii	3,281	790	0	15	525	686	1,265	762	490	738
Idaho	5,095	1,143	2	81	1,727	1,031	1,111	884	672	931
Illinois	16,579	3,850	5	288	5,074	2,457	4,905	1,745	2,372	3,455
Indiana	9,878	2,435	5	202	3,296	1,583	2,357	974	1,193	1,728
lowa	5,041	1,218	5	99	2,044	927	748	548	819	826
Kansas	6,961	1,626	3	85	2,595	1,268	1,384	768	865	1,417
Kentucky	6,019	1,407	7	58	1,597	834	2,116	759	802	1,087
Louisiana	5,475	1,401	0	66	1,622	1,163	1,223	958	758	913
Maine	2,451	543	1	52	860	452	543	290	397	382
Marshall Islands	2	0	0	0	0	0	2	0	0	0
Maryland	7,961	2,566	3	90	2,219	1,245	1,838	1,048	1,172	1,389
Massachusetts	7,820	2,158	1	63	2,737	1,221	1,640	920	1,096	1,206
Michigan	13,774	3,207	6	213	4,696	2,250	3,402	1,453	1,717	2,560
Minnesota	12,483	2,466	1	111	3,956	2,019	3,930	1,024	1,339	2,679
Mississippi	4,224	1,275	1	31	1,128	830	959	453	513	637
Missouri	9,271	2,301	4	158	3,032	1,580	2,196	1,164	1,208	1,631
Montana	3,817	886	2	33	1,360	860	676	615	438	693
Nebraska	3,566	932	0	37	1,313	626	658	272	535	537
Nevada	7,511	1,424	0	53	1,798	1,411	2,825	1,531	778	1,622
New Hampshire	3,654	644	2	46	986	545	1,431	578	391	762
New Jersey	8,723	2,275	2	43	2,620	1,357	2,426	1,228	1,275	1,632
New Mexico	4,294	1,076	2	71	1,461	1,001	683	1,299	469	617
New York	16,053	4,891	17	135	5,170	2,684	3,156	2,137	2,429	2,662
North Carolina	14,739	3,264	4	164	4,348	2,371	4,588	1,875	2,202	2,739
North Dakota	3,505	961	0	26	1,078	1,131	309	203	377	490
Northern Mariana Islands	17	6	0	0	1	4	6	1	3	4
Ohio	15,322	3,555	20	251	5,134	2,334	4,028	1,736	2,097	2,980
Oklahoma	8,143	2,363	2	52	2,557	1,551	1,618	710	861	1,352
Oregon	9,177	2,244	3	100	3,196	2,019	1,615	1,865	1,315	1,727
Palau	0	0	0	0	0	0	0	0	0	0
Pennsylvania	15,141	3,581	10	191	4,629	2,387	4,343	2,286	1,964	2,820
Puerto Rico	1,596	633	0	50	335	218	360	153	106	221
Rhode Island	957	258	1	8	298	150	242	102	131	152
South Carolina	6,810	1,416	0	76	2,041	1,138	2,139	883	896	1,187
South Dakota	2,333	526	1	55	777	522	452	284	220	435
Tennessee	12,125	2,630	3	106	3,132	1,878	4,376	1,639	1,281	2,305
Texas	52,014	12,344	4	395	13,563	8,561	17,147	6,724	6,060	9,293
Utah	8,570	2,188	0	73	2,174	1,547	2,588	1,244	894	1,787
Vermont	1,248	279	1	10	463	258	237	251	166	187
Virgin Islands	172	45	0	1	56	28	42	18	6	17
Virginia	14,284	3,312	6	153	3,802	2,573	4,438	2,270	2,146	2,799
Washington	20,080	4,459	2	211	5,793	3,245	6,370	2,754	1,978	3,902
West Virginia	1,720	487	0	41	566	316	310	227	290	283
Wisconsin	9,186	2,035	4	257	3,397	1,322	2,171	759	1,171	1,650
Wyoming	1,869	453	1	20	722	333	340	264	241	289
AA - Americas ${ }^{4}$	19	1	0	0	6	4	8	3	2	8
AE - Europe and Canada ${ }^{4}$	261	74	0	2	49	56	80	55	16	91
AP - Pacific ${ }^{4}$	417	221	0	2	54	89	51	69	14	64
1. Not included in total. 2. Includes non-U.S total. 3. Includes American Samoa, Federated States of Micronesia, Guam, Marshall Islands, Northern Mariana Islands, Palau, Puerto Rico, and Virgin Islands.			4. Military personnel holding civilian certificates and stationed in foreign country. 5. Non-U.S. are non-U.S. nationals who hold FAA certificates.							Source: FAA

6.3 Active FAA Pilot Certificates Held by Category and Age Group of Holder (as of December 31, 2017)

Age Group	Type of Pilot Certificate								
	Total Plots	Student	Recreational	Sport Pilot	Private	Commercial	Airline Transport	Remote Pilot	CFI
Total	609,305	149,121	157	6,097	174,516	114,186	165,228	69,166	106,692
14-15	317	317	0	0	0	0	0	0	0
16-19	17,350	13,448	1	17	3,602	282	0	990	63
20-24	61,034	34,107	12	116	15,035	10,862	902	5,087	4,144
25-29	67,901	31,366	22	175	13,250	17,597	5,491	8,591	8,037
30-34	57,885	20,867	12	265	12,980	12,078	11,683	9,743	11,755
35-39	53,294	14,666	7	258	12,282	9,397	16,684	8,964	12,480
40-44	46,771	8,664	11	283	12,062	7,570	18,181	7,598	10,841
45-49	49,362	6,797	12	418	12,747	7,445	21,943	7,309	11,695
50-54	55,746	6,082	12	655	15,780	7,956	25,261	6,437	10,756
55-59	59,930	5,068	11	878	19,938	8,799	25,236	5,603	9,823
60-64	54,309	3,564	20	1,064	21,246	9,239	19,176	4,474	8,936
65-69	37,879	2,255	18	829	16,442	8,317	10,018	2,614	7,362
70-74	26,444	1,256	11	639	10,899	7,508	6,131	1,308	6,026
75-79	12,967	457	6	337	5,226	4,118	2,823	347	2,952
80 and over	8,116	207	2	163	3,027	3,018	1,699	101	1,822

Source: FAA

6.4 Average Age of Active FAA Pilots by Category (1993-2017)

Year	Average All Pilots	Type of Plot Certificate					
		Student	Recreational	Sport Pilot	Private	Commercial	Airline Transport
1993	41.3	33.7	45.5	-	42.7	41.9	44.1
1994	41.9	34.3	46.5	-	43.2	42.4	44.4
1995	42.9	34.5	48.3	-	44.6	43.7	44.9
1996	43.2	34.6	49.3	-	45.1	44.1	45.1
1997	43.6	34.6	49.5	-	45.6	44.6	45.6
1998	43.8	34.7	49.8	-	45.9	45.0	45.4
1999	43.6	34.6	49.5	-	45.6	44.6	45.3
2000	43.7	34.1	49.8	-	45.6	44.9	45.8
2001	44.0	33.3	50.8	-	46.0	45.0	46.0
2002	44.4	33.7	51.0	.	46.2	45.5	46.6
2003	44.7	34.0	51.5	-	46.5	45.6	47.0
2004	45.1	34.2	51.3	-	47.0	45.9	47.5
2005	45.5	34.6	50.9	53.2	47.4	46.0	47.8
2006	45.6	34.4	51.5	52.9	47.7	46.1	48.1
2007	45.7	34.0	52.4	52.9	48.0	46.1	48.3
2008	45.1	33.6	50.1	53.2	46.9	44.8	48.5
2009	45.3	33.5	50.4	53.5	47.1	44.2	48.9
2010	44.2	31.4	50.8	53.8	47.6	44.2	49.4
2011	44.4	31.4	48.8	54.4	47.9	44.4	49.7
2012	44.7	31.5	47.8	54.7	48.3	44.8	49.9
2013	44.8	31.5	44.8	55.2	48.5	45.4	49.7
2014	44.8	31.5	43.1	55.8	48.5	45.5	49.8
2015	44.8	31.4	44.6	56.2	48.5	45.6	49.9
2016	44.9	31.7	44.0	56.4	48.4	46.0	50.2
2017	44.9	32.5	49.0	57.1	48.9	46.2	50.6

6.5 FAA Pilot Certificates Issued by Category (1982-2016)

Year	Student		Private		Commercial		Airline Transport		Helicopter (only)		Clider (only)	
	Original	Additional										
1982	90,816	-	52,144	16,276	11,048	11,910	5,037	7,956	2,256	330	793	184
1983	92,239	-	41,210	12,721	8,789	9,513	5,643	8,187	1,932	315	606	162
1984	90,167	-	36,545	11,784	7,702	8,895	5,099	9,335	1,808	319	524	139
1985	86,060	-	35,402	11,636	8,404	7,197	6,081	9,192	2,105	207	537	138
1986	88,699	-	34,816	12,672	8,889	9,241	6,498	10,372	2,209	234	514	109
1987	85,611	-	42,287	16,302	11,314	11,635	7,678	11,956	2,217	293	542	74
1988	86,193	-	39,900	15,800	12,042	10,597	7,461	11,209	1,947	287	475	28
1989	87,698	-	35,360	22,240	13,759	11,778	7,829	12,698	2,240	252	336	22
1990	88,586	-	41,749	19,299	15,500	12,584	8,013	13,540	2,700	266	378	41
1991	82,205	-	49,580	23,630	16,869	13,506	8,437	13,979	3,344	291	487	29
1992	78,377	-	39,968	19,419	14,354	11,630	7,699	13,391	2,684	291	376	32
1993	69,178	-	39,060	18,801	12,645	10,466	6,129	12,995	2,310	30	341	28
1994	66,501	-	32,787	14,568	9,237	8,630	5,360	10,963	1,801	267	320	25
1995	60,497	-	28,333	15,331	9,133	9,042	5,965	13,641	1,724	290	373	83
1996	56,653	-	24,714	18,199	10,245	10,494	7,444	17,229	1,638	349	633	195
1997	60,941	-	21,552	13,522	8,988	9,587	7,045	16,266	1,385	296	501	161
1998	63,037	756	26,297	15,966	10,042	10,269	7,547	19,085	1,530	211	472	105
1999	58,278	1,030	24,630	15,222	9,737	9,963	6,721	19,380	1,514	222	423	98
2000	58,042	1,070	27,223	17,223	11,813	11,652	7,715	20,558	1,776	234	455	62
2001	61,897	1,161	25,372	16,807	11,499	11,115	7,070	21,357	1,698	218	403	77
2002	65,421	1,317	28,659	18,607	12,299	11,628	4,718	18,502	2,073	275	336	38
2003	58,842	1,230	23,866	14,899	9,670	8,872	3,892	13,196	2,013	269	312	47
2004	59,202	1,302	23,031	14,234	9,836	9,635	4,255	15,328	2,736	366	309	43
2005	53,576	1,418	20,889	12,952	8,834	8,874	4,750	15,534	2,917	521	290	27
2006	61,448	1,551	20,217	13,079	8,687	9,603	4,748	15,942	3,569	816	298	42
2007	66,953	1,450	20,299	13,970	9,318	9,574	5,918	15,973	4,073	1,041	263	14
2008	61,194	1,507	19,052	14,409	10,595	10,202	5,204	15,658	3,639	930	204	11
2009	54,876	2,006	19,893	14,570	11,350	9,399	3,113	11,605	3,648	1,011	249	10
2010	54,064	1,057	14,977	10,260	8,056	7,778	3,072	10,890	2,686	670	222	8
2011	55,298	857	16,802	10,703	8,559	10,027	4,677	13,694	3,123	894	219	10
2012	54,370	694	16,571	10,720	8,651	9,341	6,396	12,768	2,892	900	180	0
2013	49,566	676	15,776	10,098	8,140	7,922	8,346	13,288	2,888	899	163	1
2014	49,261	698	17,795	11,396	9,803	8,840	7,749	19,481	3,754	1,072	195	5
2015	49,062	590	16,473	11,067	9,211	8,348	6,544	19,823	2,999	957	188	3
2016	36,712	174	17,082	11,900	10,191	9,564	9,520	20,747	2,759	782	170	1
An addition added to a Student cer cation, as w data display issued, neall	g is added certificate sissued ar hose that mbined FA btained th	an existing pil stimated. They ot require a m edical Certific gh the Medica	certificate clude those ical examin and Stude ertification	, instrument r th a medical c n. Until April Pilot Certificat tem. As such,	ig	mbers include ations remain months for p ate and pilot on the new stud ertified Flight the certificate	both first tim valid for 24 under the tificates are t pilot cert tructors (CP	pplications a endar month of 40 . As of longer issued tes. Designat process stude	enewals. St pilots age il 2016, co d there will examiners, ilot certific	nt medical or older, and ned medical no expiratio inspectors, , and FAA		Source: FAA

DEFINITIONS

Active Pilot - A pilot who holds a pilot certificate and a valid medical certificate (except for sport pilots).

Airman - A pilot, mechanic, or other licensed aviation technician. The term refers to men and women.

Airman Certificate - A document issued by the Administrator of the Federal Aviation Administration. The Airman Certificate certifies that the holder complies with the regulations governing the capacity in which the certificate authorizes the holder to act as an airman in connection with an aircraft.

6.6 FAA Non-Pilot Certificates (2000-2017)

Year	Mechanic	Repairman	Parachute Rigger	Ground Instructor	Dispatcher	Flight Navigator	Flight Engineer	Flight Attendant ${ }^{3}$
2000	344,434	38,208	10,477	72,326	16,340	570	65,098	n/a
2001	310,850	40,085	7,927	72,261	16,070	509	65,398	n/a
2002	315,928	37,114	8,063	73,658	16,695	431	63,681	n/a
2003	313,032	37,248	7,883	72,692	16,955	382	61,643	n/a
2004	317,111	39,231	8,011	73,735	17,493	336	59,376	n/a
2005	320,293	40,030	8,150	74,378	18,079	298	57,756	125,032
2006	323,097	40,329	8,252	74,849	18,610	264	55,952	134,874
2007	322,852	40,277	8,186	74,544	19,043	250	54,394	147,013
2008	326,276	41,056	8,248	74,983	19,590	222	53,135	154,671
2009	329,027	41,389	8,362	75,461	20,132	181	51,022	156,741
2010	308,367	41,196	8,009	70,560	16,576	171	48,569	156,368
2011	335,431	40,802	8,491	74,586	21,363	146	47,659	167,037
2012	337,775	40,444	8,474	73,599	21,862	141	46,639	172,357
2013	338,844	39,952	8,491	72,493	22,401	126	45,317	179,531
2014	341,409	39,566	8,702	71,755	23,113	115	43,803	188,936
2015	342,528	39,363	8,846	70,957	23,754	102	42,460	200,319
2016	279,435	34,411	5,851	65,053	19,758	67	35,761	212,607
2017	286,268	35,040	6,192	66,423	20,664	64	34,534	222,037

1. Number of non-pilot certificates represents all certificates on record since no medical examination is required.

Source: FAA
2. Airmen without a plastic certificate are no longer considered active by the FAA starting with the 2016 data.
3. Flight attendant information was first available from FAA Registry in 2005.

PILOT CATEGORIES

Student Pilot - A student pilot must be 16 years old, medically certificated by a Federal Aviation Administration (FAA) medical examiner, and may only fly solo under the supervision of a flight instructor. A student pilot may not operate an aircraft that is carrying passengers or that is carrying property for compensation or hire.

Recreational Pilot - A recreational pilot may fly no more than one passenger in a light, single-engine aircraft with no more than four seats, during good weather and daylight hours, and unless otherwise authorized, not more than 50 miles from his or her home airport.

Sport Pilot - A sport pilot may operate a light-sport aircraft under a limited set of flight conditions. The certificate does not require an FAA medical examination, but the pilot can carry a driver's license as proof of medical competence. Holders of a sport pilot certificate may fly an aircraft with a standard airworthiness certificate if the aircraft meets the definition of a light-sport aircraft.

Private Pilot - A private pilot may carry passengers in any aircraft. The private pilot may not act as pilot-incommand of an aircraft that is carrying passengers for compensation or hire or act as pilot-in-command of an aircraft that is being operated for compensation or hire (such as an aircraft hired to conduct pipeline patrol but carrying no passengers).

Commercial Pilot - A commercial pilot may act as pilot-in-command of an aircraft that is carrying passengers for compensation or hire, and as pilot-in-command of an aircraft that is being operated for compensation or hire, but not as pilot-in-command of an aircraft in air carrier service.

Airline Transport Pilot - An airline transport pilot may act as pilot-in-command of an aircraft in air carrier service.

7.1 Airports by Country, Europe (2010-2014 Estimates)

Country	Airports with Paved Runways						Airports with Unpaved Runways						Heliports
	Total Airports	$\begin{gathered} \text { Over } \\ 10,000 \mathrm{ft} \end{gathered}$	$\begin{aligned} & 8,000 \mathrm{ft} \mathrm{to} \\ & 10,000 \mathrm{ft} \end{aligned}$	$\begin{aligned} & 5,000 \mathrm{ft} \text { to } \\ & 8,000 \mathrm{ft} \end{aligned}$	$\begin{aligned} & 3,000 \mathrm{ft} \text { to } \\ & 5,000 \mathrm{ft} \end{aligned}$	$\begin{aligned} & \text { Under } \\ & 3,000 \mathrm{ft} \end{aligned}$	Total Airports	$\begin{gathered} \text { Over } \\ 10,000 \mathrm{ft} \end{gathered}$	$\begin{aligned} & 8,000 \mathrm{ft} \mathrm{to} \\ & 10,000 \mathrm{ft} \end{aligned}$	$\begin{aligned} & 5,000 \mathrm{ft} \text { to } \\ & 8,000 \mathrm{ft} \end{aligned}$	$3,000 \mathrm{ft}$ to 5,000 ft	$\begin{gathered} \text { Under } \\ 3,000 \mathrm{ft} \end{gathered}$	
Albania	4	-	3	1	-	-	1	-	-	-	1	-	1
Andorra	-	-	-	-	-	-	-	-	-	-	-	-	-
Armenia	10	2	2	4	2	-	1	-	-	-	1	-	-
Austria	24	1	5	1	4	13	28	-	-	1	3	24	1
Azerbaijan	30	5	5	13	4	3	7	-	-	-	-	7	1
Belarus	33	1	20	4	1	7	32	1	-	1	2	28	1
Belgium	27	6	9	2	1	9	18	-	-	-	-	16	1
Bosnia-Herz	7	-	4	1	-	2	18	-	-	1	6	11	6
Bulgaria	124	2	17	15	-	90	78	-	-	-	6	72	2
Croatia	24	2	6	3	3	10	45	-	-	1	6	38	1
Cyprus	13	-	6	3	3	1	2	-	-	-	-	2	9
Czech Rep.	41	2	9	12	2	16	87	-	-	1	26	60	1
Denmark	28	2	7	4	12	3	61	-	-	-	2	59	-
Estonia	13	2	8	2	1	-	5	-	-	1	1	3	1
Finland	75	3	26	10	21	15	73	-	-	-	3	70	-
France	297	14	26	98	83	76	176	-	-	-	67	109	1
Georgia	18	1	7	3	5	2	4	-	-	1	2	1	-
Germany	322	14	48	60	70	130	219	-	-	2	32	185	2
Greece	67	6	15	19	18	9	15	-	-	-	2	13	9
Hungary	20	2	6	5	6	1	21	-	-	2	8	11	3
Iceland	6	1	-	3	2	-	93	-	-	3	27	63	-
Ireland	16	1	1	4	5	5	23	-	-	-	2	21	\cdot
Italy	99	9	31	18	29	12	31	-	-	1	11	19	5
Latvia	19	1	3	5	3	7	23	-	-	-	-	23	1
Liechtenstein	-	-	-	-	-	-	-	-	-	-	-	-	-
Lithuania	26	3	1	7	2	13	55	1	-	-	2	52	-
Luxembourg	1	1	-	-	-	-	1	-	-	-	-	1	1
Macedonia	10	-	2	-	-	8	4	-	-	-	1	3	-
Malta	1	1	-	-	-	-	-	-	-	-	-	-	2
Moldova	5	1	2	2	-	-	2	-	-	-	1	1	-
Monaco	\cdot	-	-	-	-	-	-	-	-	-	-	-	1
Montenegro	5	-	2	1	1	1	1	-	-	-	1	-	1
Netherlands	20	2	10	2	5	1	7	-	-	-	3	4	1
Norway	67	1	12	11	19	24	31	-	-	-	6	25	1
Poland	86	5	29	37	9	6	39	-	-	1	17	21	6
Portugal	43	5	7	8	13	10	22	-	-	-	1	21	.
Romania	26	4	10	11	-	1	27	-	-	-	6	21	4
Serbia	11	2	3	3	3	-	19	-	-	1	10	8	2
Slovakia	19	2	2	3	3	9	18	-	-	-	10	8	1
Slovenia	7	1	1	1	3	1	9	-	-	1	3	5	-
Spain	98	18	12	19	25	24	54	-	-	2	14	38	10
Sweden	149	3	12	74	23	37	81	-	-	-	5	76	2
Switzerland	41	3	2	13	6	17	23	-	-	-	-	23	1
Turkey	89	16	35	17	17	4	9	-	-	1	4	4	20
Ukraine	108	13	42	22	3	28	79	-	-	5	5	69	9
United Kingdom	272	7	31	93	76	65	190	-	-	2	25	163	9
Europe Total	2,401	165	479	614	483	660	1,732	2	-	28	322	1,378	137
United States	5,054	189	235	1,478	2,249	903	8,459	1	6	140	1,552	6,760	5,287

7.2 U.S. Civil and Joint Use Airports, Heliports, and Seaplane Bases on Record by Type of Ownership (2010)

State or Territory	State or Territory Iotal	Public Use		Civil Private Use Landing Facilities							Military-Only Use
								Other			
		Total	Part 139	Total	Airports	Heliports	Seaplane Bases	Gliderports	Balloon Ports	Ultralight Flightparks	
Grand Total	19,750	5,178	559	14,120	8,405	5,425	290	31	13	134	274
United States Total	19,729	5,168	551	14,111	8,403	5,418	290	31	13	134	272
Alabama	281	98	10	172	87	81	4	-	-	-	11
Alaska	734	408	26	307	245	38	24	-	-	-	19
American Samoa	4	3	3	1	1	-	-	-	-	-	-
Arizona	314	79	14	219	107	112	-	2	-	6	8
Arkansas	307	99	9	199	118	81	-	2	-	4	3
California	960	257	36	671	263	404	4	3	-	1	28
Colorado	449	76	16	365	186	179	-	1	1	1	5
Connecticut	146	23	5	122	35	82	5	-	-	1	-
Delaware	42	11	1	30	21	9	-	-	-	-	1
District of Columbia	20	3	2	13	-	13	-	-	-	-	4
Florida	857	127	25	697	370	289	38	2	-	5	26
Georgia	461	110	10	339	227	110	2	1	-	1	10
Guam	3	1	1	1	-	1	-	-	-	-	1
Hawaii	50	14	7	30	14	16	-	-	-	-	6
Idaho	280	119	7	158	108	49	1	-	-	2	1
Illinois	788	115	17	665	413	247	5	2	-	5	1
Indiana	610	107	12	487	348	123	16	-	-	11	5
lowa	289	121	8	162	79	83	-	-	-	3	3
Kansas	383	141	10	238	203	35	-	1	1	-	2
Kentucky	223	60	7	157	95	62	-	-	.	4	2
Louisiana	480	75	9	381	150	219	12	-	-	20	4
Maine	175	68	6	104	64	17	23	-	-	2	1
Maryland	226	37	3	182	111	67	4	-	-	-	7
Massachusetts	241	40	8	198	39	142	17	-	1	1	1
Michigan	467	228	20	236	142	89	5	-	-	2	1
Midway Atoll	2	1	1	1	1	-	-	-	-	-	-
Minnesota	469	154	9	313	203	59	51	-	-	1	1
Mississippi	244	80	11	157	107	50	-	-	-	1	6
Missouri	518	132	11	380	251	128	1	-	-	3	3
Montana	258	121	15	134	102	31	1	-	-	1	2
N. Mariana Islands	11	5	3	6	-	6	-	-	-	-	-
Nebraska	244	86	9	156	122	34	-	-	-	-	2
Nevada	125	49	5	69	43	26	-	1	-	1	5
New Hampshire	139	25	3	114	28	79	7	-	-	-	-
New Jersey	314	46	4	256	54	196	6	-	5	-	7
New Mexico	174	61	9	107	81	26	-	-	-	1	5
New York	603	148	24	448	263	175	10	2	1	3	1
North Carolina	429	112	15	300	212	88	-	1	1	4	11
North Dakota	281	89	8	190	175	15	-	-		-	2
Ohio	729	170	13	554	344	209	1	2	1	1	1
Oklahoma	390	140	4	240	160	80	-	-	-	4	6
Oregon	420	97	10	322	231	90	1	1	-	-	-
Pennsylvania	821	132	16	662	316	339	7	2	-	18	7
Puerto Rico	52	12	4	39	6	31	2	-	-	-	1
Rhode Island	31	8	1	22	3	17	2	-	1	-	-
South Carolina	196	68	8	119	86	31	2	1	-	3	5
South Dakota	178	74	7	103	70	33	-	-	-	-	1
Tennessee	311	81	8	226	124	101	1	-	-	2	2
Texas	2,006	391	31	1,578	1,050	528	-	6	-	9	22
Utah	142	46	9	93	44	49	-	-	-	-	3
Vermont	81	16	2	65	45	14	6	-	-	-	-
Virgin Islands	8	2	2	6	-	4	2	-	-	-	-
Virginia	427	66	7	340	213	125	2	1	1	1	18
Wake Island	1	-	-	-	-	-	-	-	-	-	1
Washington	552	137	11	403	240	157	6	-	-	3	9
West Virginia	120	35	8	83	38	35	10	-	-	1	1
Wisconsin	565	133	9	422	315	95	12	-	-	8	2
Wyoming	119	41	10	78	52	26	-	-	-	-	-

Source: FAA Airport Engineering Division
7.3 U.S. Airports Ranked by Number of General Aviation Operations at Tower (2017)

7.4 FAA Air Route Facilities and Services (1975-2017)

Year	VOR/VORTAC	Non-Directional Beacons	Air Route Traffic Control Centers	Air Route Traffic Control Towers	Flight Service Stations	International Flight Service Stations	Instrument Landing Systems	WAAS-Enabled Procedures	Airport Surveillance Radar	ADS-B Radios
1975	1,011	848	25	487	321	7	580	n / a	177	0
1976	1,020	920	25	488	321	7	640	n / a	175	0
1977	1,021	959	25	495	319	7	678	n/a	182	0
1978	1,020	988	25	494	319	6	698	n / a	185	0
1979	1,028	1,015	25	499	318	6	753	n/a	192	0
1980	1,037	1,055	25	502	317	6	796	n / a	192	0
1981	1,033	1,123	25	501	316	6	840	n/a	199	0
1982	1,029	1,143	25	492	316	6	884	n/a	197	0
1983	1,032	1,183	25	494	316	5	934	n/a	197	0
1984	1,035	1,211	25	497	310	5	955	n / a	197	0
1985	1,039	1,222	25	500	302	4	968	n/a	198	0
1986	1,043	1,239	25	686	293	3	977	n / a	312	0
1987	1,039	1,212	25	500	302	4	968	n / a	312	0
1988	1,043	1,239	25	686	293	3	977	n / a	311	0
1989	1,046	1,263	25	686	255	3	1,100	n/a	312	0
1990	1,045	1,271	25	686	235	3	1,120	n/a	311	0
1991	1,045	1,295	24	694	192	3	1,114	n/a	318	0
1992	1,044	1,314	24	691	179	3	1,177	n/a	312	0
1993	1,046	1,263	24	686	255	3	1,100	n/a	312	0
1994	1,045	1,271	24	686	235	3	1,120	n/a	311	0
1995	1,045	1,295	24	694	192	3	1,114	n/a	318	0
1996	1,044	1,314	24	691	179	3	1,177	n/a	312	0
1997	1,041	1,344	24	684	135	3	1,231	n/a	310	0
1998	1,039	1,348	24	683	128	3	1,238	n/a	307	0
1999	1,041	1,320	24	680	75	3	1,327	n/a	295	0
2000	993	1,199	25	663	75	3	1,370	n/a	297	0
2001	1,116	1,675	24	678	76	3	1,388	n/a	292	0
2002	n / a	n / a	21	n/a	76	3	n/a	n/a	n / a	0
2003	n/a	n/a	21	n/a	76	3	n/a	n/a	n/a	0
2004	1,119	1,685	21	688	76	3	1,473	n/a	227	0
2005	1,111	1,613	21	693	76	3	1,490	n/a	226	0
2006	n / a	n/a	21	494	76	-	n/a	n/a	n / a	0
2007	n/a	n/a	21	499	76	-	n/a	n/a	n/a	0
2008	n/a	n/a	21	503	4	-	n/a	n/a	n/a	n / a
2009	n/a	n/a	21	508	4	-	n/a	n/a	n/a	n/a
2010	n/a	n/a	21	508	4	-	n/a	n/a	n/a	202
2011	n/a	n/a	21	512	4	-	n/a	11,828	n/a	339
2012	n/a	n/a	22	514	4	-	n/a	12,876	n/a	440
2013	967	n/a	22	516	4	-	n/a	13,102	n/a	556
2014	967	n/a	22	516	4	-	n/a	13,554	230	634
2015	957	n/a	22	517	4	-	n/a	13,844	230	634
2016	957	n/a	22	517	4	-	n/a	14,245	230	634
2017	937	n/a	22	518	4	-	n/a	14,580	230	649
The FAA stopped publishing the "Air Traffic Factbook" in 2008. GAMA is working to backfill missing data. Air traffic control tower data shows federal, non-federal, and military through 2005, while 2006 through 2011 are FAA and contract.				Honolulu control facility as well as San Juan and Guam CERAP not included in ARTCC data. ADS-B radios only list those that have reached Initial Operating Capability (IOC). The 2010 and 2012 figures are from November. Figures from other years are from December. WAAS-capable approach procedures include LNAV, LNAV/VNAV, LPV, LP procedures, and GPS stand-alone procedures, of which 3,872 are LPV in the 2017 data.					Source: FAA Air Traffic Organization	

7.5 Airports by Type (2004-2016)

Year	2004	2005	2006	2007	2008	2009	2010	2011	2014	2015	2016
Total Civil Public Use Airports	5,288	5,270	5,233	5,221	5,202	5,178	5,175	5,172	5,145	5,136	5,119
Civil Public Use Part 139	599	575	604	565	560	559	551	547	537	531	529
Civil Public Use Non-Part 139	n/a	n/a	n/a	4,556	4,642	4,619	4,624	4,625	4,608	4,605	4,590
Civil Public Use Abandoned	10	14	27	18	16	18	14	20	15	14	20
Newly Established Public Use	n/a	n/a	n/a	9	3	5	16	6	10	8	4
Total Civil Private Use Airports	14,532	14,584	14,757	14,839	14,451	14,298	14,353	14,339	13,863	14,096	14,168
Civil Private Use Airports Abandoned	117	115	133	297	461	360	121	183	307	112	222
Newly Established Private Use	n/a	n/a	n/a	274	151	214	212	20	171	352	305
Military Airports	57	n/a	n/a	261	277	274	274	271	286	287	283
Total Airports by Type	19,820	19,854	19,983	20,341	19,930	19,750	19,802	19,782	19,299	19,524	19,576
Airports	n/a	n/a	n/a	13,822	13,589	13,494	13,473	13,450	13,089	13,156	13,154
Heliports	n/a	n/a	n/a	5,708	5,568	5,571	5,650	5,686	5,553	5,709	5,763
Seaplane Bases	n/a	n/a	n/a	527	503	497	496	497	488	493	497
Gliderports	n/a	n/a	n/a	35	35	35	35	35	36	35	35
Stolports	n/a	n/a	n/a	87	82	n/a	n/a	n/a	n/a	n/a	n/a
Balloon Ports	n/a	n/a	n/a	15	14	14	13	13	13	13	13
Ultralight Flightparks	n/a	n/a	n/a	147	139	139	135	131	120	118	114

Safety and Accident Statistics

8.1 U.S. General Aviation Accidents, Fatal Accidents, and Fatalities (2000-2017)

Year	Accidents		Accidents		Fatalities		Flight Hours	Rate	
	All	Excluded	Fatal	Excluded	Total	Aboard		All	Fatal
2000	1,837	7	345	7	596	585	27,838,000	6.57	1.21
2001	1,727	3	325	1	562	558	25,431,000	6.78	1.27
2002	1,716	7	345	6	581	575	25,545,000	6.69	1.33
2003	1,741	4	352	3	633	630	25,998,000	6.68	1.34
2004	1,619	3	314	0	559	559	24,888,000	6.49	1.26
2005	1,671	2	321	1	563	558	23,168,000	7.20	1.38
2006	1,523	2	308	1	706	547	23,963,000	6.35	1.28
2007	1,654	2	288	2	496	491	23,819,000	6.94	1.20
2008	1,568	2	277	0	496	487	22,805,000	6.87	1.21
2009	1,480	4	275	1	479	470	20,862,000	7.08	1.32
2010	1,441	3	271	2	458	455	21,688,000	6.63	1.24
2011	1,471	3	270	1	458	447	21,488,000	6.84	1.24
2012	1,472	1	273	1	438	438	20,881,000	7.05	1.30
2013	1,224	3	222	3	391	386	19,492,000	6.26	1.12
2014	1,224	0	256	0	423	413	19,617,000	6.24	1.31
2015	1,210	7	230	4	378	375	20,576,000	5.85	1.10
2016	1,266	2	213	2	386	379	21,333,747	5.93	0.99
2017P	1,223	n/a	198	n/a	n/a	n/a	n/a	n/a	n/a

$P=$ Preliminary
General Aviation as defined by NTSB includes operations under Part 91, Part 91K, Part 125, Part 133, and Part 137 for the purpose of accident statistics.
Excluded "Accidents" and "Fatalities" are suicide/sabotage and stolen/unauthorized events, which are not included in rates.

FIGURE 8.1 Accident Rates in U.S. General Aviation (1985-2016)

1985198619871988198919901991199219931994199519961997199819920002001200220032004200520062007200820092010201120122013201420152016

8.2 U.S. On-Demand FAR Part 135 Accidents, Fatal Accidents, and Fatalities (1990-2017)

Year	Accidents		Accidents		Fatalities		Flight Hours	Rate	
	All	Excluded	Fatal	Excluded	Total	Aboard		All	Fatal
2000	80	0	22	0	71	68	3,930,000	2.04	0.56
2001	72	0	18	0	60	59	2,997,000	2.40	0.60
2002	60	0	18	0	35	35	2,911,000	2.06	0.62
2003	73	0	18	0	42	40	2,927,000	2.49	0.61
2004	66	0	23	0	64	63	3,238,000	2.04	0.71
2005	65	0	11	0	18	16	3,815,000	1.70	0.29
2006	52	0	10	0	16	16	3,742,000	1.39	0.27
2007	61	0	14	0	43	43	4,033,000	1.51	0.35
2008	58	0	20	0	69	69	3,205,000	1.81	0.62
2009	47	0	2	0	17	14	2,901,000	1.62	0.07
2010	30	0	6	0	17	17	3,113,000	0.96	0.19
2011	50	0	16	0	41	41	3,082,000	1.62	0.52
2012	38	0	8	0	12	12	3,522,000	1.02	0.23
2013	45	0	10	0	25	25	3,384,000	1.30	0.30
2014	35	0	8	0	20	20	3,654,000	0.96	0.22
2015	39	0	7	0	27	27	3,566,000	1.07	0.20
2016	31	0	7	0	19	19	3,499,517	. 89	0.20
2017P	47	n/a	6	n/a	n/a	n/a	n / a	n / a	n/a

$P=$ Preliminary
Excluded "Accidents" and "Fatalities" are suicide/sabotage and stolen/unauthorized events, which are not included in rates
In 2002, FAA changed its estimate of air taxi activity. The revision was retroactively applied to the years 1992 to present. In 2003, the FAA again revised flight activity estimates for 1999 to 2002.
U.S. air carriers operating under 14 CFR Part 135 were previously referred to as Sched-

Source: NTSB uled and Nonscheduled Services. Current tables now refer to these same air carriers as Commuter Operations and On-Demand Operations, respectively, in order to be consisent with definitions in 14 CFR 119.3 and terminology used in 14 CFR 135.1. On-Demand Part 135 operations encompass charters, air taxis, air tours, or medical services (when a patient is on board).

8.3 European Union General Aviation and Aerial Work Accident Data (2006-2013)

Year	Aircraft with Mass Below 2,250 Kg				Aircraft with Mass Above 2,250 Kg				All Aircraft Accidents Accidents	
	Accidents		Fatalities		Accidents		Fatalities			
	Total	Fatal	Aboard	Ground	Total	Fatal	Aboard	Ground	Total	Fatal
2006	1,121	151	231	3	36	10	29	-	1,157	161
2007	1,157	142	238	5	30	10	18	1	1,187	152
2008	1,145	140	216	2	32	10	23	1	1,177	150
2009	1,234	163	253	4	19	9	18	-	1,253	172
2010	1,047	129	189	1	31	6	14	-	1,078	135
2011	1,109	169	253	1	34	12	29	-	1,143	181
2012	918	133	226	1	10	2	2	1	995	148
2013	948	128	202	-	15	3	7	-	1,006	139

The European Aviation Safety Agency (EASA) includes aircraft registered in Member States that are balloons, aeroplanes, gliders, gyroplanes, helicopters,
Source: EASA Annual Safety Review microlights, motor gliders, and other aircraft, among general aviation accidents that occurred in general aviation operations and while conducting aerial work. This data does not include general aviation aeroplanes conducting Commercial Air Transport operations.
Data from 2006-2008 does not include Italy, Liechtenstein, Luxembourg, and Slovenia.
Data after 2012 includes aerial work accidents in the "All Aircraft" total data only and is not part of the other columns.
General aviation accident data is not available for years after 2013 in this format. See Table 8.4 for EASA's new accident data structure.

8.4 European Union General Aviation and Aerial Work Accidents (2014-2016)

Year	General Aviation												Commercial								All Aircraft Accidents						
	Aeroplane		Rotorcraft		Glider		Microlight		Balloon		Bus. Aviation Aeroplane		Aerial Work				Commercial Air Transport										
			Aeroplane	Rotorcraft		Aeroplane		Rotorcraft																			
	Total	Fatal			Total	Fatal			Total	Fatal	Fatalities																
2014	421	53	73	9			195	18			204	30	11	0	3	1	24	5	11	2	27	1	6	1	975	120	313
2015	320	41	40	6	180	24	n/a	n/a	9	2	n/a	n/a	29	7	9	2	25	1	10	1	622	84	283				
2016	311	46	42	9	167	19	n/a	n/a	12	1	n/a	n/a	23	6	13	0	20	1	8	3	596	85	145				

[^4]Source: EASA Annual Safety Review

2018 Executive Committee

Phil Straub GARMIN INTERNATIONAL
GAMA Chairman

Mark Burns GULFSTREAM AEROSPACE CORPORATION
GAMA Vice Chairman

David Coleal BOMBARDIER BUSINESS AIRCRAFT

Environment
Committee Chairman

Simon Caldecott PIPER AIRCRAFT, INC.

Immediate Past
Chairman

Tyson Weihs FOREFLIGHT
Flight Operations Policy Committee Chairman

David Paddock JET AVIATION

Communications Committee Chairman

Rhett Ross
CONTINENTAL MOTORS, INC.
Policy \& Legal Issues Committee Chairman

Nicolas Chabbert DAHER
Safety \& Accident Investigation Committee Chairman

David Van Den Langenbergh LUXAVIATION
Airworthiness \& Maintenance Policy
Committee Chairman

$$
4+3
$$

Jim Ziegler GREENWICH AEROGROUP
Security Issues
Committee Chairman

Pete Bunce
President \& CEO

Jahan Ahmad Director, Accounting

Jonathan Archer Director, Engineering \& Airworthiness

Gregory J. Bowles Vice President, Global Innovation \& Policy

Brian Davey Director, European \& International Affairs

Walter L. Desrosier Vice President, Engineering \& Maintenance

Lani Esparza Executive Assistant

Paul H. Feldman
Vice President, Government Affairs

Bree Foran
Director, Meetings \& Membership Services

Alexandra Grose Manager, Government Affairs

Lauren L. Haertlein Director, Safety and Regulatory Affairs

Jens C. Hennig Vice President, Operations

Joe Sambiase Director, Maintenance \& Airworthiness

Amanda Joyner
Director, Government
Affairs

Edward T. Smith
Senior Vice President,
International \&
Environmental Affairs

GAMA Member Companies

60 ONE Aviation www.oneaviation.aero
61 Piasecki Aircraft Corporation www.piasecki.com
62 Piper Aircraft, Inc. www.piper.com
63 PPG Aerospace www.ppg.com

64 Quest Aircraft Company www.questaircraft.com

65 Redbird Flight Simulations, Inc. www.redbirdflight.com
66 Rockwell Collins, Inc. www.rockwellcollins.com
67 Safe Flight Instrument Corporation www.safeflight.com
68 SimCom International www.simulator.com

69 SmartSky Networks, LLC www.smartskynetworks.com

70 StandardAero www.standardaero.com

71 Tamarack Aersopace Group www.tamarackaero.com
72 Terrafugia
www.terrafugia.com
73 Textron Aviation
www.txtav.com
74 Thrush Aircraft, Inc. www.thrushaircraft.com

75 True Blue Power www.truebluepowerusa.com

76 TRU Simulation + Training www.trusimulation.com
77 Uber Technologies www.uber.com/elevate

78 Ultra-ICE Corporation www.ultra-ice.com

79 Unitech Aerospace www.unitech-aerospace.com

80 Universal Avionics Systems Corp. www.uasc.com
81 UTC Aerospace Systems www.utcaerospacesystems.com
82 Williams International www.williams-int.com

83 Wipaire, Inc. www.wipaire.com

84 Woodward, Inc. www.woodward.com
85 World Fuel Services
www.wfscorp.com

86 Yingling Aviation www.yinglingaviation.com

87 Zee Aero

 www.zee.aero
SOUTH AMERICA

Brazil
88 Embraer www.embraer.com

EUROPE

Austria
89 Bosch General Aviation Technology GmbH www.bosch-aviation.com

90 BRP Powertrain-Rotax www.rotax.com

91 Diamond Aircraft Industries www.diamondair.com

France
92 Airbus Helicopters, Inc. www.airbushelicoptersinc.com
93 Catherineau www.catherineau.com

94 DAHER

www.tbm.aero
95 Dassault Falcon www.dassaultfalcon.com

96 SMA

www.smaengines.com
Germany
97 Flight Design GmbH www.flightdesign.com
98 Lilium
www.lilium.com
99 Siemens AG
www.siemens.com
Italy
100 Piaggio Aerospace www.piaggioaerospace.it
Luxembourg
101 Luxaviation Group
www.luxaviation.com

Slovenia
102 Pipistrel
www.pipistrel.si
Switzerland
103 Jet Aviation
www.jetaviation.com
104 Pilatus Aircraft, Ltd.
www.pilatus-aircraft.com
United Kingdom
105 BBA Aviation
www.bbaaviation.com

www.avic.com
Israel
108 Eviation Ltd.
www.eviation.co

AUSTRALIA

109 Mahindra Aerospace
www.mahindraaerospace.com

General Aviation Manufacturers Association
U.S. HEADQUARTERS

1400 K Street, NW, Suite 801
Washington, DC 20005
+1 202-393-1500

EUROPEAN OFFICE
Rue de la Loi 67/3
Brussels 1040, Belgium
+32 25503900

[^0]: The fractional owner and fleet information for 2007 and later also includes helicopters.
 Source: JETNET LLC; www.JETNET.com

[^1]: Source: Czech Civil Aviation Authority (Urad Pro Civilni Letectvi), http://www.caa.cz/ and Light Aircraft Association of the Czech Republic, http://www.laacr.cz/

[^2]: TRAFI uses the term airliner. Airliners are defined as aeroplanes with a maximum take-off weight (MTOW) of more than $8,618 \mathrm{~kg}$.
 Source: Finnish Transport Safety Agency (Liikenteen turvallisuusvirasto), www.trafi.fi

[^3]: SLMG $=$ Self-Launching Motor Glider Does not differentiate if aeroplane is used for GA or commercial operations.

 Data from December 31 of specified year (published first day of the following year).

[^4]: EASA has changed how the agency publishes safety statistics. Table 8.4 shows the new format for 2014 while Table 8.3 shows the historical data for 2006-2013.

